English

 
 
  • 2019年度第1回研究職員公募 募集開始へのリンクバナー
  • 産総研LINK No.24 掲載ページへのリンクバナー
  • 研究者が語る!1分解説へのリンク
  • 技術で未来拓く 産総研の挑戦へのリンクバナー
  • ブルーバックス探検隊が行くへのリンクバナー
  • 速報!国際度量衡総会において新定義採択へのリンク
  • テクノブリッジon the Webへのリンク
  • 産総研が創出するベンチャービジネス紹介コンテンツへのリンク
 

最近の研究成果

単結晶ダイヤモンド 2019年3月20日発表

世界初、ガスからクラックのない1立方センチ級単結晶ダイヤモンドの作製に成功-ダイヤモンド半導体の開発推進により、飛躍的な省エネ社会実現に期待-

世界で初めて、ガスからクラックのない1立方センチ級の体積を持った単結晶ダイヤモンドの作製に成功しました。合成面積のスケールアップが容易なガスを原料とする手法により世界最大級の高品質結晶を作製できたことから、この成果は、大型ウエハー実現につながる大きな一歩です。今後、ダイヤモンドを用いた次世代パワー半導体の開発が加速し、さまざまな電気機器に組み込まれることにより、より高効率な電力利用が可能になり、飛躍的な省エネルギー社会実現につながることが期待できます。

ガスから作製した1立方センチ級単結晶ダイヤモンド(左)と現在市販されている高温高圧法を用いて作製される単結晶ダイヤモンド基板(右)

アブラムシ 2019年4月16日発表

兵隊アブラムシが放出する体液で巣を修復する仕組みを解明-傷修復の分子機構を増強した「スーパー凝固体液」で壊れた巣を修復-

社会性アブラムシが植物組織に形成する虫こぶ(巣)が敵に壊されたときに、兵隊幼虫が自ら大量の凝固体液を放出して穴をふさぐ「自己犠牲的な虫こぶ修復」の分子機構を解明した。兵隊幼虫の体液には特殊化した血球細胞が充満しており、放出されると細胞が崩壊して一連の化学反応が始まる。まず放出された脂質成分が速やかに固化し、続いて体液のメラニン化とタンパク質の架橋が起こり、褐色の強固な凝固物を形成する。すなわち兵隊幼虫は、体表の傷をふさぐ「かさぶた」の形成機構を著しく増強し、凝固活性が極めて高い体液を外部に大量に放出することで、植物組織からなる巣の壁に生じた傷を修復するという、特異で高度な社会行動の仕組みが明らかになった。この成果は、虫こぶ修復という兵隊アブラムシの社会行動について、その分子機構の全体像を明らかにしたものであり、昆虫の驚くべき生物機能や社会行動の進化を理解する上で重要な知見を与える。

水溶液中の抗体凝集体観察と画像解析

錯覚 2019年3月7日発表

視覚と聴覚で異なる時間判断の仕組みの一端を解明-時間の錯覚:時間を誤って判断してしまう仕組み-

脳内の処理経路や処理時間が異なる感覚情報が、どのように統合されて、「我々が感じる現在」=主観的な現在が構築されるのか、その仕組みの一端を明らかにした。錯覚にはさまざまな種類がある。フラッシュラグ効果も錯覚の一つで、ある出来事と同時に見えたと“思った”映像が、実際には異なる時刻の映像である錯覚として知られる。今回、この錯覚をヒントに、心理学的逆相関法という手法を用いて、どの時刻の映像が、ある出来事(突然のフラッシュ光やクリック音の出現)と同時だと判断されるのかを計測した。その結果、フラッシュ光と同時に見えたと思った映像の実際の時刻と、フラッシュ光の時刻とのずれは、その映像を脳が処理する時間に依存して、映像の種類ごとに異なることがわかった。一方、視覚と聴覚の情報は直接統合できないため、クリック音と同時だと判断されるのは、映像の種類によらず、音に気付いた時刻(=音の実際の時刻より後)の映像を同時と判断することがわかった。実験によって得たこれらの発見により、身近な錯覚の背後にある、人間が時間を判断する仕組みの一端が明らかになった。この研究成果は、ヒューマンエラーによる事故やトラブルの防止への貢献が期待される。

映像の種類によって同時と判断される時刻が異なることを発見の図

材料開発 2019年4月1日発表

革新的機能性材料開発のためのマルチスケールシミュレーター群を開発-国内産業による材料開発期間の短縮を目指して開発したシミュレーター群を公開-

革新的機能性材料の開発支援技術の中核となるマルチスケールシミュレーター群を開発し、一般に公開する(プロジェクト事務局 シミュレーター公開担当:u2m-sim-ml*aist.go.jp(*を@に変更して送信下さい。))。今回のマルチスケールシミュレーター群は、機能性材料に対する理論や手法に基づく計算シミュレーターの開発、拡張、連携により作成され、有機・高分子系の機能性材料を主な対象とする、九つのマルチスケールシミュレーターから構成される。このマルチスケールシミュレーター群とあわせてAI技術やデータ科学を活用することにより、国内産業の材料開発期間が大幅に短縮されると期待される。

マルチスケールシミュレーションシステムの適用の例

異種材料接合 2019年3月12日発表

5G用低損失基板に向けた高強度異種材料接合技術を開発-簡便な表面改質技術で平滑な銅箔とポリマーをダイレクトに接合-

高周波用のフレキシブルプリント配線基板(FPC)を作製できる高強度な異種材料接合技術を開発した。この技術は銅張積層基板を構成するポリエステル膜の表面を、紫外光反応を用いる表面化学修飾技術により酸素官能基化し、ヒートプレスにより銅箔(どうはく)と接合するもので、銅箔の表面を粗くする必要がなく(粗面化が不要)高い接合強度で異種材料を接合できる。今回開発した接合技術による配線基板は、銅箔表面に凹凸が無いので、信号が銅配線の表面層を流れる高周波でも伝送距離の伸長がない。伝送損失が少ない優れた特性の第5世代通信(5G)用プリント配線基板への応用が期待される。

ポリマー膜と銅箔の異種材料接合技術の図

巨大地震による炭素輸送 2019年4月4日発表

膨大な量の有機炭素が巨大地震によって超深海海底に供給されていた-日本海溝を例とした地球表層での炭素輸送における巨大地震の役割の理解-

2011年東北地方太平洋沖地震(以下「2011年東北沖地震」という)に伴って膨大な量の有機炭素が日本海溝の海底に供給されたことを解明した。2011年東北沖地震では、有機物に富んだ表層堆積物が、地震動に伴って水深7 km以深の日本海溝の海底に広く再堆積したことがわかっていた。今回、2012~2016年に取得された海底地形、サブボトムプロファイラーのデータ、堆積物コア試料を用いて、巨大地震により日本海溝の海底に再堆積した堆積物の体積計算を初めて行った。この結果から、2011年東北沖地震によって少なくとも100万トンの有機炭素が海溝底に供給されていたことが明らかになった。これらの結果は超深海では初めての報告例であり、また、2011年東北沖地震が日本海溝での炭素循環や短期的な底生生物活動に与えたインパクトが想像以上に大きいことを示唆する。

日本海溝の小海盆に2011年東北沖地震により再堆積した有機炭素の質量

原子時計 2019年2月19日発表

超省エネ・小型の原子時計の開発に成功-自動車やスマートフォン、小型衛星などにも搭載可能な高精度時計-

消費電力が極めて低い小型の原子時計を開発した。この原子時計は、構成部品のひとつである周波数シンセサイザの消費電力を大幅に削減し、さらに新たな量子部パッケージを用いることで温度制御の効率を向上させ、60 mWという低消費電力と15 cm3という極小サイズを実現している。この研究成果は、大型で消費電力が大きかった原子時計のサイズおよび消費電力を大幅に削減することで、これまで搭載が難しかった自動車やスマートフォン、小型衛星など、様々な機器に原子時計を搭載可能となり、自動運転、高精度な測位、新たな衛星ネットワークの実現を大きく加速させる可能性がある。

開発した小型原子時計 (内寸33 mm x 38 mm x 9 mm)

  • 私たちの取組み
  • こんなところに産総研
  • 連携と技術相談
  • 冠ラボ
  • TIA
  • オープンイノベーションラボラトリ(OIL)
  • レポート
  • データベース
  • 出版物
  • メールマガジン
  • 見学施設
  • YouTube AIST channnel
  • Twitter @AIST_JP
  • 調達情報RSS
  • 手続き一覧
  • 環境・社会的取り組み
  • 情報公開
  • 個人情報保護
国立研究開発法人産業技術総合研究所