English

 
 
  • 産総研LINK No.28 掲載ページへのリンクバナー
  • 研究者が語る!1分解説へのリンク
  • ブルーバックス探検隊が行くへのリンクバナー
  • テクノブリッジon the Webへのリンク
  • 産総研の研究拠点紹介ページへのリンク
  • 産総研が創出するベンチャービジネス紹介コンテンツへのリンク
再生・停止ボタン

最近の研究成果

未利用熱回収 2020年01月23日発表

塗布構造吸収器を採用した車載向け小型吸収冷凍機を開発-2020年1月から商用車での車両評価を開始、実用化を目指す-

世界で初めて「塗布構造吸収器」と吸収器全体を水蒸気透過膜で覆う「メンブレンラッピングアブソーバー」を採用したエンジン車両搭載型小型吸収冷凍機を開発しました。開発した冷凍機は、車両の排ガス熱を回収し、冷熱を発生する吸収冷凍機を車両に搭載するために小型・軽量化したほか、「塗布構造吸収器」や「メンブレンラッピングアブソーバー」の採用により、走行時の傾斜や揺れなどの影響を防止します。これにより、車両環境に対応でき、圧縮式冷凍機からの置き換えにより、エンジン車の冷房運転時の大幅な燃費向上が期待できます。2020年1月から、吸収冷凍機を搭載した車両の評価を開始し、商用車の排ガスを利用した車室空調の性能を確認して吸収冷凍機を車両システムに組み込むための課題を抽出します。これらを通じて車載吸収冷凍機の実用化を目指します。

概要図

真核生物起源 2020年01月16日発表

真核生物誕生の鍵を握る微生物「アーキア」の培養に成功-生物学における大きな謎「真核生物の起源」の理解が大きく前進-

深海堆積物から真核生物の祖先に近縁な微生物(「アーキアに属する」)の培養に世界で初めて成功しました。本成果は生物学の大きな謎である「真核生物の起源」について多くの洞察を与えるものです。今後、このアーキアを使ったさらなる研究や、深海堆積物に生息するとされる真核生物に近縁な他のアーキアや原始的な単細胞の真核生物を培養することにより、アーキアから真核生物に進化した道筋がより詳細に明らかになっていくものと期待されます。

概要図

次世代人工知能 2019年12月10日発表

AIの動画認識やテキスト理解の基盤となる事前学習済みモデルを構築・公開-実世界のデータを活用する次世代AI技術の開発と社会実装の促進に期待-

実世界のデータを活用する次世代人工知能(AI)技術のソフトウェアモジュール構築の一環として、AIによる動画認識とバイオ分野に関する自然言語テキストの理解のための転移学習の基盤となる事前学習済みモデルを構築しました。今回構築した事前学習済みモデルには、実世界の大量の動画やテキストデータをあらかじめ学習させているため、AI開発に用いることで、少量の学習用データでも次世代AIのソフトウェアモジュールを構築・利用できるようになります。これにより、例えば少量の動画データによる医療動画診断支援向けAIなど、実世界のデータを活用する次世代AI技術の開発と社会実装の促進が期待できます。

概要図

調光デバイス 2020年01月28日発表

量産化可能な塗布プロセスを用いた大面積調光デバイスを開発-光学特性をコントロールすることで快適で安全な空間を創出-

可視光から近赤外光にわたる遮光性を備えた調光デバイスの大面積作製法を開発した。今回の調光デバイスは電圧をかけることで電気化学的なイオン伝導が生じ、エレクトロクロミズムの原理により光学特性を切り替えることができる。産総研などは、調光材料として可視光遮蔽に関係するプルシアンブルー型錯体ナノ粒子と、可視光と近赤外光両方の遮蔽に関係する酸化タングステンナノ粒子を、それぞれ水に分散してインクを作製した。これらのインクを工業的な塗布装置の一種であるスリットコーター向けに最適化することで大面積調光デバイスの作製を可能にした。開発した調光デバイスを調光窓として用いれば、場面に応じた光学特性を利用して空調負荷や照明負荷の効率的な低減や安全な空間を実現できる。

概要図

金ナノ材料 2020年01月29日発表

金ナノ材料の簡便な合成法を開発-コハク酸誘導体を用いて一段階反応で短時間合成・結晶成長方向制御を実現-

有機化合物の一種であるコハク酸誘導体が自己組織化で形成する二分子膜をテンプレートとして用いた、単結晶金ナノ材料の簡便な合成法を開発した。金の微粒子(金ナノ材料)は、導電材料、太陽電池、センサープローブ、触媒などで利用されており、通常は、金イオンの溶液を還元して得られる。しかし、金ナノ材料のサイズや形状の均一性や結晶成長方向を制御することが困難なため、従来の作製法では、長時間の複雑な反応を要し、コストや環境負荷が高いことが問題であった。今回、コハク酸の誘導体が、短時間で金イオンを還元できること、この化合物が形成する二分子膜がテンプレートとして金ナノ材料の結晶成長方向を制御できることを見いだした。今回開発した方法により、厚みが約数十ナノメートル(nm)、横幅が約6マイクロメートル(μm)のシート状の金ナノ材料(金ナノシート)の集合体を合成できた。この金ナノシートの集合体は柔らかく、成型が容易であり、得られたそのままの状態でも導電性を示すが、圧縮によって導電性が大幅に向上する。今回の成果で、金ナノ材料のサイズ、形状の均一性、結晶成長方向を制御でき、かつ高速な製造法への道が開けた。

概要図

海底表層コアリング 2020年01月29日発表

「ちきゅう」による遠州灘掘削の速報:長期間の連続した地震記録試料を採取

掘削試料の船上解析を進め、その概要を明らかにしましたので、速報でお知らせします。このたび遠州灘で、もっとも精度の高い地層記録が保存されていると期待される海底の凹地において、「ちきゅう」による連続コアリングを実施し、タービダイトという地震によってできた地層の採取に成功しました。

概要図

中性子解析 2020年1月22日発表

輸送機器の構造材料・部品分析向けに小型中性子解析装置を開発-センチメートル厚の金属部品内部の結晶情報を非破壊で分析可能-

輸送機器の構造材料・部品などの非破壊分析向けに小型中性子解析装置を開発しました。本装置は、解析用の放射線として透過力の高い中性子線を用いることで、従来のX線では透過できなかったセンチメートル厚の金属部品などの内部の結晶情報を非破壊で分析することを可能にしました。また、装置が小型である上、小規模体制での運営により、産業ユーザーからの試料サイズや装置利用時間に関する要望にも柔軟に対応しやすく、健全性の高い構造材料・部品の開発と輸送機器の軽量化の促進につなげられます。今後、中性子線の安定化や検出器の高感度化など装置の性能向上を進め、2020年度での本格稼働を目指します。本装置を、構造材料・部品開発における高性能な非破壊分析手法として確立することで、輸送機器軽量化の進展に貢献します。

概要図

  • 私たちの取組み
  • こんなところに産総研
  • 連携と技術相談
  • 冠ラボ
  • TIA
  • オープンイノベーションラボラトリ(OIL)
  • レポート
  • データベース
  • 出版物
  • メールマガジン
  • 見学施設
  • YouTube AIST channnel
  • Twitter @AIST_JP
  • 調達情報RSS
  • 手続き一覧
  • 環境・社会的取り組み
  • 情報公開
  • 個人情報保護
国立研究開発法人産業技術総合研究所