English

 
 
  • 研究者が語る!1分解説へのリンク
  • ブルーバックス探検隊が行くへのリンクバナー
  • かがくチップスYouTubeチャンネルへのリンク
  • さんそうけんサイエンスタウンへのリンクバナー
  • 融合研究センター・ラボへのリンクバナー
  • テクノブリッジon the Webへのリンク
  • 産総研の研究拠点紹介ページへのリンク
  • 産総研が創出するベンチャービジネス紹介コンテンツへのリンク

最近の研究成果

新しい構造の水 2020年08月07日発表

水/高圧氷の界面に"新しい水"を発見!-水の奇妙な物性の謎に迫る画期的な成果-

室温−20°Cに保たれた低温室内で水に高圧を加えることで結晶化する氷IIIを観察し、成長・融解する氷と水の界面に通常の水とは異なる未発見の新しい水の層が形成されることを見出しました。さらに、氷表面を濡らす新しい水の濡れ性と表面パターンから、新しい水の密度は通常の水よりも大きい上に、通常の水とは混ざり合わず、構造が異なることが示唆されました。この成果は、長年に渡る大きな謎である水の特異な物性を説明する“構造の異なる二種類の水の存在”仮説の検証に道を拓くものです。

エネルギー・環境領域の最近の研究成果の概要図

共生細菌 2020年06月11日発表

共生細菌が宿主昆虫の幼虫と成虫で異なる機能を担う-昆虫の変態、暮らし方の変化、体内微生物の関係を解明-

湿地に生息し、幼虫は水中で植物の根から汁を吸い、成虫は陸上で葉を食べるという特異な生態をもつネクイハムシ類の消化管やマルピーギ管にいる共生細菌マクロプレイコーラのゲノム解読と機能解析を行った。その結果、多くの遺伝子を失って著しく小さくなった共生細菌ゲノムの機能は、植物の汁に不足しているタンパク質の合成に必要な必須アミノ酸などの栄養素供給と、ハムシ自身は持っておらず植物の細胞壁の消化に必要なペクチン分解酵素の生産に特殊化していることを解明した。今回、1種類の共生細菌が同じ宿主昆虫の幼虫と成虫で全く異なる機能を果たしうることを初めて明らかにした。共生進化の過程を理解するうえで興味深い新知見であるとともに、ネクイハムシ類の中には、稲やレンコンを加害するイネネクイハムシのような害虫が含まれることから、共生細菌を標的とした新たな害虫防除法の開発につながる可能性も期待される。

生命工学領域の最近の研究成果の概要図

農地の区画情報 2020年07月10日発表

AIによる農地の形状変化の特定に成功!-筆ポリゴン(農地の区画情報)の更新期間を5年から1年に短縮-

AI(人工知能)により人工衛星画像等を解析し、形状変化のあった筆ポリゴンを含む区画を抽出する手法を開発しました。これにより、従来は5年を要していた筆ポリゴンの更新が1年で可能となり、農地情報のデジタルインフラとして、スマート農業の推進やデータ駆動型の農業経営の実現に大きく貢献することとなります。

情報・人間工学領域の最近の研究成果の概要図

有機トランジスタ 2020年08月10日発表

「めっき」を用いて高性能有機トランジスタを実現-真空プロセスフリー・低コスト・低環境負荷なエレクトロニクス用電極として期待-

「無電解めっき」を用いて高精細にパターニングされた金電極を有機半導体に貼り付け、高性能を有する有機トランジスタを製造しました。エレクトロニクスデバイスを駆動させる上で電圧や電流を入出力するための電極は必要不可欠です。有機エレクトロニクスデバイス用電極は、通常金や銀などの貴金属を高真空下で大きなエネルギー(高温プロセスやプラズマプロセス)を用いることで成膜させることが多く、これは低コスト・低環境負荷プロセスを実現する上で重要な課題でした。化学反応だけで金属薄膜を被膜する手法である「無電解めっき」を用いて、高真空プロセスなしに金電極を作製しました。また、親液・撥液パターニングを併用することでリソグラフィープロセスなしで10マイクロメートル程度の高精細パターニングを実現しました。パターニングされた金電極は、電極転写法を用いて半導体に取り付けられ、たった1分子層(厚さ4ナノメートル)からなる有機半導体上でも、半導体の機能を十分利用できることを実証しました。今回の成果により、高コストかつ複雑な高真空プロセス・リソグラフィープロセスを全く必要としない積層デバイスの大面積製造が可能となり、将来の産業応用における低コスト・フレキシブルエレクトロニクス用のプロセスとしての利用が見込まれます。

材料・化学領域の最近の研究成果の概要図

ハイブリッド量子系 2020年07月02日発表

反強磁性体における磁気振動モードの結合を発見-マグノンによる新しい量子情報処理技術の開拓に向けて-

二つの磁石の磁極が逆方向に結合した人工反強磁性体において、反強磁性体特有の二つの磁気振動モード(音響モード・光学モード)が、特定の条件下において反発し合う事を発見しました。反発し合う事は、それぞれの振動モードが結合しエネルギーのやり取りをしていることを意味します。二つの異なる準粒子の結合はハイブリッド量子系と呼ばれ、これまではフォトンーマグノン結合、フォノンーマグノン結合などが主に研究されてきました。今回発見した磁気の準粒子であるマグノン同士の結合(マグノンーマグノン結合)は、量子情報処理を目指して研究が進められているハイブリッド量子系に新しい視点を与え、マグノンを利用した新たな情報処理技術の開拓につながることが期待されます。

エレクトロニクス・製造領域の最近の研究成果の概要図

地下深部水圧 2020年08月03日発表

プレート境界付近に存在する水は地震後も高い圧力を保持-水は南海トラフ巨大地震と深く関係-

宮崎県延岡衝上断層の露頭の調査・解析により、深さ約8kmにあるプレート境界付近に存在する水は地震後に岩石に亀裂が形成されてもほとんど減少せず、高い圧力を保持しながら蓄積され続ける可能性を見いだした。プレートの境界付近に存在する水圧の上昇は地震に直接繋がることが知られている。ひとたび地震が起こると、岩石に形成される亀裂を通じた排水でプレート境界付近の水圧が低下し、その後、亀裂が閉じると水圧が徐々に上昇すると考えられる。再び水圧が上昇するまでに一定の時間がかかるが、地震後に下がる水圧の実際の変化量や、次の地震に向けて再び水圧が上昇するまでの時間はよく分かっていなかった。今回、地下深部の水圧の時間変化を精緻に計算しモデル化した結果、地震後の水圧は従来のモデルよりも減少しておらず、その後、時間をかけて上昇することが明らかになった。この成果は巨大地震の発生予測におけるプレート境界付近の水圧状態の長期モニタリングの重要性とその調査の枠組みを示すものといえる。

地質調査総合センターの最近の研究成果の概要図

導電率計測技術 2020年06月21日発表

ポスト5G/6Gの低消費電力化に向けた超広帯域での材料計測技術-簡便な測定系によって100 GHz超まで金属の導電率を計測する技術を実現-

高周波平面回路などに用いる金属材料の導電率を100 GHz超までの超広帯域にわたって簡便に測定する技術を開発した。高周波回路では、誘電体基板の誘電損失と金属線路の導電率で決まる導体損失により回路全体の伝送損失が決まる。金属と誘電体の接着性を保持するために誘電体表面は粗化されるが、ミリ波帯では粗化による導電率の低下が問題となっていた。しかし従来の導電率計測では極小の誘電体柱からなる共振器が必要であり、また誘電体柱のサイズで決まる単一周波数のみでの測定しかできないことから、100 GHz超の周波数帯で金属導電率を簡便に計測する技術は確立されていなかった。今回、誘電体基板で金属箔を挟んだ誘電体共振器に対して、その高次モード励振の共振特性の鋭さから導電率を厳密に決定できる電磁界解析アルゴリズムを開発することで、誘電体の精密な機械加工を必要としない簡便な測定系により、金属導電率を10 GHz~100 GHz超の超広帯域にわたって簡便にかつ従来技術と同等の精度で計測する技術を実現した。今回開発した技術により、5Gや6Gの低消費電力化に向けた先端材料開発が加速すると期待される。

計量標準総合センターの最近の研究成果の概要図

  • 私たちの取組み
  • かがくチップス
  • 連携と技術相談
  • 冠ラボ
  • TIA
  • オープンイノベーションラボラトリ(OIL)
  • レポート
  • データベース
  • 出版物
  • メールマガジン
  • 見学施設
  • YouTube AIST channnel
  • Twitter @AIST_JP
  • 調達情報RSS
  • 手続き一覧
  • 環境・社会的取り組み
  • 情報公開
  • 個人情報保護
国立研究開発法人産業技術総合研究所