English

 

生命工学領域のタイトル画像

健康で活力のある長寿社会の実現を目指して

生命工学領域は、新たな健康評価技術や創薬推進技術の開発、 あるいは個人の状態に合わせて健康維持・増進・回復を推進する技術の開発により、ライフ・イノベーションに貢献します。また、バイオプロセスを用いた環境負荷低減技術の開発により、グリーン・イノベーションに貢献します。これらの活動により、健康で安心して暮らせる健康長寿社会や環境負荷を抑えた持続可能な社会の実現を目指します。

生命工学領域の体制図1


重要戦略詳細

創薬基盤技術の開発

創薬のリードタイムを短縮するために、これまで絨毯爆撃的に行われてきた古典的な新薬の探索から脱却し、短時間に低コストで成功率の高いスマートな創薬プロセスを実現することを目指します。そのために、ロボットやナノテクノロジー、数理解析技術を駆使した創薬最適化技術、ゲノムデータから疾病因子を推定したりゲノム情報の秘匿検索を行ったりするゲノム情報解析技術、糖鎖などのバイオマーカーによる疾病の定量評価技術など、新しい創薬の基盤となる技術を開発します。そのため、以下の研究開発に取り組みます。

  • 産総研が優位性をもつバイオとITを統合した医薬リード化合物最適化技術の高度化・高速化を進め、新薬開発速度の加速および開発コストの低減に資する創薬基盤技術の開発を行います。
  • 産総研がもつ優れた糖鎖解析技術やライブラリー解析技術を応用して、疾患に特異的に反応する分子標的薬の開発に資する基盤技術の開発を行います。
  • 生体分子の構造や機能を理解するとともに、得られた知見を活用し、新しい創薬技術基盤、医療技術基盤の開発を行います。

医療基盤・ヘルスケア技術の開発

豊かで健康的なライフスタイル実現のために、医療基盤・ヘルスケア技術の開発を行います。そのために、損傷を受けた生体機能を幹細胞などを用いて復元させる再生医療などの基盤となる幹細胞の標準化と細胞操作技術の開発、健康状態を簡便に評価できる技術や感染症などの検知デバイスの開発、さらに、生体適合性や安全性の高い医療材料や医療機器の開発を行います。そのため、以下の研究開発に取り組みます。

  • 先進医療技術を確立するための基盤となる細胞操作技術と医療機器・システムの技術開発を行います。さらにガイドライン策定と標準化による幹細胞ならびに医療機器などの実用化支援を行います。
  • 健康状態を簡便に評価する技術や感染症などの検知デバイスの開発を目指して、健康にかかわる分子マーカーや細胞の計測技術、生理状態の計測技術、そのデバイス化技術の開発を行います。

生物機能活用による医薬原材料などの物質生産技術の開発

化石燃料代替物質、化成品原料、医薬品原料、有用タンパク質、生物資材など、物質循環型社会の実現のために、遺伝子組み換え技術を用いて微生物や植物の物質生産機能を高度化し、バイオプロセスを用いた医薬原材料などの有用物質を効率的に生産する技術の開発を行います。そのため、以下の研究開発に取り組みます。

  • バイオプロセスによる高効率な物質生産技術の開発を進め、医薬原材料、有用タンパク質、生物資材、新機能植物品種、化石燃料代替物質、化成品原料などの有用物質を高効率に生産する技術の開発を行います。
  生命工学領域の体制図2

最近の研究成果

より安全にゲノム編集ができる技術を開発

ゲノム編集酵素Cas9に強固に結合し、酵素活性をコントロールする核酸分子(核酸アプタマー)を開発した。また、この核酸アプタマーを細胞内に導入することにより、ゲノム編集酵素の活性をコントロールして、これまで問題となっていた偶発的なゲノム編集(オフターゲット)を抑制し、より正確にゲノム編集ができることを実証した。この技術は、分子生物学研究、遺伝子治療、品種改良など、ゲノム編集技術が利用されるさまざまな分野への貢献が期待される。

生命工学領域の最近の研究成果の概要図

今回開発した核酸アプタマーにより、偶発的に生じてしまうゲノム編集を抑制できる

分析化学の約50年来の難問を解決、実用的な微量分析法を実現

極めて高い再現性、感度、均一性、生体適合性、耐久性を持つ表面増強ラマン分光法(Surface-Enhanced Raman Spectroscopy: SERS)の基板を開発し、化学(特に微量分析)における50年来の難問を解決しました。1970年代に発見されたSERSは、金属基板上の局在表面プラズモン共鳴(Localized Surface Plasmon Resonance: LSPR)により、通常のラマン分光法よりも数桁以上高い感度を提供することができ、無標識の微量分析に有効として、利用されてきました。しかしながら、SERSはその高い感度をホットスポットに強く依存する上、低再現性、不均一性、低生体適合性、金属基板による光熱、酸化などの本質的な問題があり、生体分子への応用が困難でした。本研究では、これらの問題を克服するために、金属を一切使わない多孔質炭素ナノワイヤをアレイ状に配列したナノ構造体(Porous Carbon Nanowire Array: PCNA)をSERS基板として開発し、これによってLSPRを使わない高感度化を可能にしました。具体的には、強力な広帯域電荷移動共鳴による感度増強(約106)のみならず、上述の金属基板による問題を克服し、極めて高い均一性、生体適合性、耐久性を、さまざまな分子サンプルを用いて実証しました。本手法の高い実用性及び信頼性により、分析化学、食品科学、薬学、病理学などの多岐に渡る学術分野に加え、感染症検査、糖尿病検査、がん検診、環境安全、科学捜査などにおける微量分析への展開が期待されます。例えば、血中グルコースの無標識検出による糖尿病検査、感染症(インフルエンザ、新型コロナウイルス感染症など)の抗原抗体反応測定、がん代謝プロファイリング解析、細菌(大腸菌、ピロリ菌など)の表面タンパク質を検出することによるリアルタイム細菌検出、光合成生物の生体分子の分子振動計測による量子生命科学研究、などが可能となります。

生命工学領域の最近の研究成果の概要図

本研究の概念図

研究ユニット

バイオメディカル研究部門

生体機能を解明、計測、応用することによるバイオ産業への展開

バイオメディカル研究部門では研究開発による社会課題解決、特に健康医療に関する社会ニーズに応えるのみならず、研究開発を通じた人材育成を進めることにより健康長寿社会実現に永続的に貢献することを目的としています。

研究戦略
研究者自身の研究の位置づけ(「生物機能解明」、「生物機能計測」、「生物機能応用」)、研究目的を明確にし、効率よく研究目標に達成し、広く成果発信に努めます。生命工学領域研究の特色である個人の興味から湧き出るアイディアに基づく個々のシーズを芽吹かせます。部門経営として夫々の課題を有機的に融合し、より付加価値の高い研究成果として発信をするとともに、シーズを上手く発展させるための体制を積極的に構築し、速やかな研究展開を図り、技術を確立ならびに成果発表に結び付けます。また、外部連携を促進させるためのイベントを積極的に開催し、企業ニーズをサーチするとともに橋渡し連携の緒とします。バイオメディカル研究を社会実装するためには医学連携が重要となるため、外部大学医学部や医療研究機関との連携強化に努めます。

人材育成
研究戦略実施のために必要なスキルを研究者の適正や年齢に合わせて獲得・向上させ、部門研究戦略実施に貢献させます。ユニークな研究技術は、バイオメディカル研究部門のレジェンドとして世代を超えて継承し、次世代が発展、展開させ、永続的な骨太の研究開発力を維持します。さらに研究開発力のみならず、纏まりを持った体制で研究推進をするうえで必要なマネージメント能力、調整能力、危機管理能力といったスキルを磨かせ、人間総合力の高い魅力ある人格完成に努め、金蘭の連携をもって技術の社会実装にバイオメディカル研究部門総合力で実現加速させます。

バイオメディカル研究部門の研究イメージ画像

バイオメディカル研究部門のプレゼンス

研究拠点

つくばセンター(中央)、関西センター

参画する技術研究組合

  • 次世代バイオ医薬品製造技術研究組合(MAB)

所在地

〒305-8566 茨城県つくば市東1-1-1 中央第6
電話:029-861-6022  FAX:029-858-3282
バイオメディカル研究部門WEBサイト

生物プロセス研究部門

バイオテクノロジーによるものづくりのための基盤研究から実用化へ

生物プロセス研究部門は、生物プロセスによる高効率な物質生産を目指した基礎的・基盤的研究から実用化研究に至るまでの一貫した研究を行い、化石燃料代替物質、化成品原料、医薬原材料、有用タンパク質、生物資材、新機能植物品種など、物質循環型社会の実現ならびに高品位な物質生産技術の開発に貢献します。

これらの目的を達成するために

  1. 微生物をはじめとする各種生物遺伝子資源の探索技術の開発
  2. 遺伝子組換え植物・微生物・動物などによる有用物質生産技術の開発
  3. タンパク質・核酸・生体関連化学物質材料などの開発

に取り組みます。

生物プロセス研究部門の研究イメージ画像

当研究部門の概要

研究拠点

北海道センター、つくばセンター(中央)

所在地

〒062‑8517札幌市豊平区月寒東2条17‑2‑1
電話:011‑857‑8537 FAX:011‑857‑8915
生物プロセス研究部門WEBサイト

健康医工学研究部門

医療機器基盤・ヘルスケア技術の開発により健康な社会づくりへ貢献

健康医工学研究部門では、持続可能な社会の中で健康かつ安全・安心で質の高い生活の実現を目指し、生体工学、生物学、材料化学、物理学などの知識や知見を結集・融合することによって人間や生活環境についての科学的理解を深め、それに基づいて、人と適合性の高い製品や生活環境を創出するための研究開発を行います。

大学や産業界とも連携し、基礎研究から橋渡し研究を進め、健康工学研究領域の確立、並びに21世紀における新たな健康関連産業創出に貢献することを目指します。

また、地域の健康関連産業の活性化への貢献も任務とします。

健康医工学研究部門の研究イメージ画像

分野横断的な知識・知見の結集・融合による健康工学研究の推進

研究拠点

四国センター、つくばセンター(中央、東)

所在地

〒761‑0395香川県高松市林町2217‑14
電話:087‑869‑3526 FAX:087‑869‑4178
健康医工学研究部門WEBサイト

細胞分子工学研究部門

健康長寿に貢献する先端基盤技術の開発

全ての生物体を構成する最小単位の細胞の中には未だ未知の仕組みが数多くそなわり、生命をつくりあげています。私たちは、その細胞の中の分子的機序を解明しそれを技術基盤としながら、医療・創薬からヘルスケア領域まで、最先端の技術を社会へ提供していきたいと考えています。特に、これまでの実績をもつ糖鎖解析・幹細胞操作・天然化合物生産・バイオ計測・バイオITの最先端技術を融合させながら、今後期待される再生医療や個別化医療、健康長寿に貢献する技術開発を推進します。

細胞分子工学研究部門の研究イメージ画像

細胞分子工学研究部門の基盤技術

研究拠点

つくばセンター(中央)、臨海副都心センター

参画する技術研究組合

  • 幹細胞評価基盤技術研究組合(SCETRA)
  • 次世代天然物化学技術研究組合

所在地

〒305-8568 茨城県つくば市東1-1-1 つくば中央第5、第6
Eメールアドレス:M-cmb5-info-ml*aist.go.jp(*を@に変更して使用してください。)
細胞分子工学研究部門WEBサイト

その他の研究推進組織

研究ラボ

  • 次世代治療・診断技術研究ラボ
  • AIST-INDIA機能性資源連携研究ラボ

生命工学領域研究戦略部

連絡先:生命工学領域研究戦略部 研究企画室

メール:life-liaison-ml*aist.go.jp(*を@に変更して送信下さい。)
話:029-862-6032


▲ ページトップへ

国立研究開発法人産業技術総合研究所