English

 
 
  • 霧島山新燃岳2018年噴火に関する調査結果へのリンク
  • 平成30年度第1回研究職員公募 募集開始へのリンクバナー
  • 技術で未来拓く -産総研の挑戦-へのリンク
  • 産総研LINK No.17 掲載ページへのリンクバナー
  • ブルーバックス探検隊が行くへのリンクバナー
  • 研究者が語る!1分解説へのリンク
  • テクノブリッジon the Webへのリンク
  • 産総研が創出するベンチャービジネス紹介コンテンツへのリンク
 

最近の研究成果

熱電材料 2018年2月1日発表

高効率な熱電変換を可能にする新しいタイプの大振幅原子振動-新規熱電材料の新しい設計指針を提案-

新規高性能熱電材料の新しい設計指針を提案した。熱電発電では熱の流れの一部を電気の流れに変換して発電する。高い熱電性能を得るには高い電気伝導率と低い熱伝導率を併せ持つ必要がある。これらは一般に相反する性質であるが、両立させるには、原子の大振幅振動(ラットリング)が有効であることが知られていた。しかし、これまでラットリングは原子がかご中に取り込まれた構造を持つカゴ状物質でのみ生じると考えられており、ラットリングによる熱電性能向上を期待できる材料系は限られていた。一方、本研究グループは、これまでにカゴ状構造を持たないテトラヘドライトでもラットリングが生じていることを発見していたが、その原因解明が課題となっていた。今回、このテトラヘドライトを詳細に調べ、カゴ状構造がなくても平面配位構造がラットリングを誘起しうることや、その原因を明らかにした。この成果は熱電材料探索の範囲を飛躍的に広げ、より高い熱電性能を持つ新材料の創製に資すると期待される。

カゴ状物質(左)と平面配位物質(右)の大振幅原子振動概念図

抗生物質耐性 2018年4月3日発表

リボソーマルRNAの抗生物質耐性変異を解析する技術の開発-耐性菌の早期発見に有用な耐性変異データベース構築に向けて-

環境バクテリアの16SリボソーマルRNA(16S rRNA)遺伝子ライブラリーの中から、淋菌感染症治療に用いられる抗生物質のスペクチノマイシンに対して耐性を示す16S rRNA遺伝子を複数発見した。さらに、耐性遺伝子の変異解析の結果、新たな耐性変異を発見した。rRNAは抗生物質の主要なターゲットの一つであり、rRNAに耐性変異が生じると、抗生物質が効かなくなる。このため、耐性変異の情報は耐性菌の早期発見に有用であるが、これまでrRNAの耐性変異の同定は困難で、耐性変異に関する情報は十分に蓄積されていなかった。今回、大腸菌を宿主として異種バクテリア由来の16S rRNAを機能解析する産総研独自の技術が、抗生物質耐性の検証に適用できることが分かった。この技術により、環境中のバクテリア由来の16S rRNA遺伝子から4種の耐性遺伝子を同定し、それらの遺伝子の変異解析により新たにスペクチノマイシンに対する3つの耐性変異を発見した。今回の方法をさまざまな抗生物質の耐性変異の検証に適用することで、耐性菌の発見・診断に有用な、耐性変異のデータベース構築が期待される。

16S rRNAの機能解析技術を用いた抗生物質耐性スクリーニングの概要の図

パスワード認証方式 2017年11月9日発表

従来方式より安全で高機能な二種類のパスワード認証方式が国際標準化-アカウントの乗っ取り対策や匿名のまま認証を受けられる方式が国際標準規格として発行-

パスワードのみを用いてユーザーとサーバーが安全に相互認証することで、フィッシングなどの攻撃検知が可能となる「AISTパスワード認証方式」をISO/IEC JTC 1/SC 27に提案し、この度、本方式が標準技術の一つとして掲載された国際標準規格 ISO/IEC 11770-4:2017が発行された。また、安全性は確保しつつ、ユーザーを特定せずに特定の権限や属性を有している事を認証する「AIST匿名パスワード認証方式」を同じくISO/IEC JTC 1/SC 27に提案し、同様に、本方式が標準技術の一つとして掲載された国際標準規格 ISO/IEC 20009-4:2017が発行された。AISTパスワード認証方式(AKAM3)は、パスワードのような短い秘密情報のみでユーザーとサーバーの相互認証を安全に実現するため、現在ウェブにおけるサーバーの認証に広く利用されているSSL/TLS通信のような公開鍵証明書を使った認証方式と異なり公開鍵証明書の検証処理が不要になり、また同じレベルの安全性を保証するISO/IEC 11770-4(第一版)に掲載の既存の認証方式に比べて少ない計算量で相互認証を実現できる。今回AKAM3が国際標準規格として発行されたことにより、今後計算能力が低い機器を含む端末などにおけるさまざまなアプリケーションへの本方式の導入が期待される。

AISTパスワード認証方式の図

生体内プローブ 2018年4月19日発表

酸化カーボンナノチューブ(CNT)を用いた高輝度近赤外蛍光イメージングプローブ-簡便に効率良くCNTを酸化する手法を開発-

カーボンナノチューブ(CNT)を酸化する簡便な方法を考案するとともに、この方法で合成した酸化CNTを用いて、生体透過性の良い第2近赤外(NIR-II)領域で発光する近赤外蛍光イメージングプローブを開発した。CNTは蛍光を発することが知られているが、近年、CNTを孤立分散させた水に、オゾン水を混和し光を照射して、より高い蛍光量子収率の酸化CNTを合成する方法が報告されている。この酸化CNTは生体透過性の良い近赤外光で励起でき、NIR-II領域で発光する。しかし、酸化CNTの大量合成ができないなどの課題があった。今回、紫外線照射で発生したオゾンでCNT薄膜に数分間の酸化処理を行うことで、酸化CNTを合成する方法を開発した。この方法は、数時間の反応時間を要する従来法に比べ、短時間に多量の酸化CNTを合成できる。合成した酸化CNTは近赤外光励起によりNIR-II領域で蛍光を発光するため、近赤外蛍光イメージングプローブとして応用できる。合成した酸化CNTの表面をリン脂質ポリエチレングリコール(PLPEG)でコーティングして水に分散できるようにし、生体内イメージングプローブとして用いてマウスの血管を長時間高輝度で造影できた。また、免疫グロブリンG(IgG)を修飾したPLPEG(IgG-PLPEG)でコーティングしたところ、免疫沈降(IP)反応により、標的指向性を付与できる可能性が確認できた。

酸化カーボンナノチューブの蛍光とマウスの血管造影の概念図

極細銀配線印刷 2018年4月17日発表

超高精細な印刷はなぜできる? -銀ナノインクの不思議を解き明かす-

超微細回路を簡便・高速・大面積に印刷できるスーパーナップ法について、技術の鍵となる、銀ナノ粒子の吸着性とインクの安定性が両立する不思議なメカニズムを解明しました。塗布や印刷によりフレキシブルな電子機器を製造するプリンテッドエレクトロニクス技術は、大規模・複雑化した従来のデバイス製造技術を格段に簡易化できる革新技術として期待されています。スーパーナップ法は、線幅1マイクロメートル以下の銀配線を簡易に印刷できる画期的な印刷技術として、現在、これにもとづく透明で曲げられるタッチパネルセンサの量産化が進められています。スーパーナップ法では、インク中に含まれた特殊な銀ナノ粒子が、基材表面に選択的に吸着する新たな仕組みが技術の鍵となっていますが、高活性な銀ナノ粒子を大量に含んだインクが、印刷に至る過程で安定なままたもたれる理由は不明でした。今回、インク中で銀ナノ粒子が凝集するメカニズムを詳しく検討した結果、銀ナノ粒子表面を保護するため、わずかに含まれている脂肪酸の分子鎖の挙動が、銀ナノ粒子の吸着性とインクの安定性を両立させるため、巧みに機能していることが明らかになりました。

スーパーナップ法により作製した銀配線の拡大写真(左)、紙幣(壱万円札)に印刷された高精細画の拡大写真(右)

3次元地質地盤図 2018年3月29日発表

千葉県北部地域の地下の地質構造を3次元で可視化-国内初の3次元地質地盤図 、地震防災・減災や地質汚染対策に有用-

首都圏のモデル地域となる、千葉県北部地域(柏~成田~船橋~千葉近辺)の3次元地質地盤図を完成させた。この3次元地質地盤図は、平成30年3月30日より、産総研のウェブサイト(「都市域の地質地盤図」https://gbank.gsj.jp/urbangeol/)で公開する予定で、誰でも自由に無償で閲覧できる。産総研はこれまで、最新の地質研究成果に基づき、日本全国の地質図を地域ごとに作成し、広く一般に提供してきた。しかし、従来の地質図は、地質構造を2次元の平面図や断面図で図示していたため、地表の地質分布は分かるものの、地下の地質構造は分かりにくかった。一方、東日本大震災では、千葉県をはじめとする沿岸域で発生した地盤の液状化が大きな社会問題となるなど、地下の地質構造の情報整備が喫緊の課題となった。また、地下水や地層などの汚染(地質汚染)の対策のために、汚染物質を拡散させる地下水の流れが分かるように、地下の地質構造を詳しく把握することが求められていた。そこで、産総研は千葉県環境研究センターの協力を得て、千葉県北部地域の地下地質構造の調査を開始した。今回、産総研のボーリング調査に基づく最新の地質研究成果、および千葉県が保有する1万地点以上の土木・建設工事のボーリング調査データに基づいて、地下数10 mまでの地質構造を立体図や任意の箇所の地質断面図として表示できる3次元地質地盤図を国内で初めて公開する。人口が密集する首都圏において、生活や産業の基盤となる地震防災・減災やインフラ整備、地質汚染対策に3次元地質地盤図が利活用されると期待される。

3次元で可視化した地下地質構造の図

単一電子素子 2018年2月2日発表

たった1個の電子で1ビットを表現する世界初のデジタル変調を実現-広い周波数範囲で正確に任意波形の極微小交流電流を発生可能に-

電流の最小単位である電子を1個単位でオン・オフ制御できる単一電子デジタル変調技術を開発した。電流は電子の流れなので、電子1個1個を正確に制御・検出できれば、従来の計測器では不可能だった精度での電流発生・計測を実現できる。産総研では、これまで、半導体ナノ加工技術で作製した単一電子素子を用いて、一定周期で電子を1個ずつ送り出し、直流電流を発生・計測する技術の開発に取り組んできた。今回、電子の密度を時間的に変化させる単一電子デジタル変調技術を開発し、電子数個レベルで正確な任意波形の電流を発生させることに成功した。発生させた電流を基準とすることで、直流(0 Hz)~メガヘルツ(MHz)の周波数帯域で、フェムトアンペア(fA)(10-15 A)以下の極微小電流を精密に測定できるようになる。今回開発した極微小電流の発生技術は、低消費電力化が期待されるスピントロニクスなど次世代素子の研究開発や、ナノ構造中で生じる物理現象の解明などの基礎研究への貢献が期待される。

電子1個を制御できる素子の電子顕微鏡写真(左)、今回開発したデジタル変調技術の模式図(右)

  • 私たちの取組み
  • こんなところに産総研
  • 総合技術相談窓口
  • TIA
  • オープンイノベーションラボラトリ(OIL)
  • レポート
  • データベース
  • 出版物
  • メールマガジン
  • 見学施設
  • Youtube AIST channnel
  • Twitter @AIST_JP
  • 調達情報RSS
  • 手続き一覧
  • 環境・社会的取り組み
  • 情報公開
  • 個人情報保護