PATHWAYS INTO THE ENERGY FUTURE

Sustainability as a Societal Goal

Prof. Dr. Christopher Hebling

Fraunhofer Institute for Solar Energy Systems ISE

Symposium for the Inauguration of the

Global Zero Emission Research Center

January 29th 2020, New Otani, Tokyo www.ise.fraunhofer.de

People

Poul La Cour: Hydrogen Production by Electrochemical Water Splitting

Hydrogen Production with a Wind Power Plant in Denmark in the 1880s

- Danish Physicist, inventor and director of the cummunity college in Askov, Denmark
- First wind power plant for rural electrification in 1891
- Hydrogen system
 - Alcaline electrolysis cell
 - \blacksquare H₂ / O₂ storage vessels
 - Gas light for hydrogen gas for the college building

Poul la Cour (1846 - 1908)

Alkaline Electrolyzers in the 100-MW-Class since the 1930s

Green Hydrogen from Hydro Power for the Fertilizer Production

Renewables

Renewable Capacities are Growing

Global Wind and Photovoltaic Installations beyond 1TW Total Capacity

Renewables in 2018:

2356 GW Global Renewable Generation Capacity:

564 GW Wind

481 GW Photovoltaics

1295 GW Hydro

118 GW Bioenergy

=> 175 GW increase in global new renewable generation capacity in 2018 (86% Solar and Wind)

⁶ Source: IRENA, 2019, http://resourceirena.irena.org/gateway/dashboard/

Levelized Cost of Electricity (LCOE) of Photovoltaik Projects

2010 - 2018 (country-average; utility-scale)

Scenarios fo 2050

- → Doubling global electricity demand
- → Dominant role of wind energy and photovoltaics for power generation

Paths

Main Goal of the Energy Transformation in Germany

Reduction of Fossile Greenhouse Gas Emissions

Green Deal (€1 trillion until 2030) For Climate Neutrality in 2050 1400 other emissions ■ energy-related emissions 1200 greenhouse gas emissions in Mt CO₂ -20 % Chancellor Merkel 05/2019 and 1000 UN Climate Change Summit 09/2019: Net Zero GHG emissions in 2050 -40 % 800 edn. - 55 % 600 - 70 % - 80 % 200

2020

2010

2030

2040

2050

European Commission:

1990

2000

Targets and Phases of the Energy Transformation in Germany

A Cost and Climate Compatible Transformation of the Energy System

REMod – Cross-sectoral energy system modelling

Cost-optimized Scenarios

Installed Photovoltaic Capacity for 2030 and 2050 in Germany

Outcome is differenciated according to the basic assumptions

Cost-optimized scenarios:

Cumulative Installed Electrolyzer Capacity in Germany

Utilized Amounts of Fossile Energy Carriers

Electricity Production in Germany – Example: Winter week in 2050

Electricity Production in Germany – Example: Summer week in 2050

Research

The Fraunhofer-Gesellschaft

Largest Organization for Applied Research in Europe

- 72 institutes and research units with total staff more than 26,600
- More than €2.5 billion annual research budget, of which around €2.1 billion is generated through contract research
 - Roughly 70 percent of contract research is generated on behalf of industry and publicly funded research projects.
 - Roughly 30 percent is contributed by the German federal and state governments in the form of base funding.
- International cooperation throughout the world

Fraunhofer Fields of Research

20

Energy Research at Fraunhofer

Fraunhofer Energy Alliance Comprising the Competence of 18 Institutes

Energy generation

- Solar thermal energy
 Photovoltaics
- Wind energy
- Bioenergy
- Hydropower
- Geothermal energy

Energy storage

- Battery cells
- Hydrogen / Fuel cells
- Mechanical
- Thermal
- Energy Harvesting

Energy efficiency

- Efficient production technology
- Mobility
- Interconnecting grids
- Energy conversion
- Energy distribution
- Energy usage

Energy Research at Fraunhofer

Central Challenges of the Energy Transition

Core results of basic studies* on the feasibility of the energy transition in Germany by 2050:	
1. Develop renewable energies faster	Ŷ₩
2. Ensure supply: Make consumption more flexible, provide controllable power plants	(1)
3. Develop market and technologies for renewable synthetic energy sources	٥
4. Switch to a new technology mix in transport	4
The switch to a new teenhology mix in transport	(- C
5. Comprehensive, energy-efficient and faster renovation of buildings	

Fraunhofer Institute for Solar Energy Systems ISE

Research for the Energy Transformation

Directors

Prof. Dr. Hans-Martin Henning

Prof. Dr. Andreas Bett

Staff

ca. 1300

Scientists, engineers, students

Budget 2019 (prelim.)

Operation 93,5 Mio. EUR

Investment 10,6 Mio. EUR

Total 104,1 Mio. EUR

Fraunhofer ISE

Areas of Concentration

Total staff >1200

Annual turnover about 90 Mio €

ENERGY TECHNOLOGIES AND SYSTEMS

Prof. Dr. Hans-Martin Henning

PHOTOVOLTAICS

Dr. Andreas Bett

Energy Efficient Buildings

Silicon Photovoltaics

Solar Thermal Power Plants and Industrial Processes

III-V and Concentrator Photovoltaics

Hydrogen Technologies and Electrical Energy Storage

Emerging Photovoltaic Technologies

Power Electronics, Grids and Smart Systems

Photovoltaic Modules and Power Plants

Internationality

Sustainable Fuels an Chemicals

Power-to-X

Combined Solar and Wind Power Potential of Japan

Japan: High potential for energetic self-sufficiency

Source: GSA 2.0, Solargis, World Bank Group (*)

Note: Global Horizontal Irradiation (GHI), [kWh/m²] per year

Heat map of wind power

Source: GWA 3.0, DTU, World Bank Group (*)

Note: Wind Speed at 100m, [m/s]

Averaged Capacity Factor for Wind and Solar Energy in Europe

1995 bis 2015

28 Source: dwd.de/klima

© Fraunhofer ISE FHG-SK: ISE-INTERNAL

Full Load Hours of Photovoltaic and Wind Power Plants Combined

29 Source: IEA (2017) Renewables

© Fraunhofer ISE FHG-SK: ISE-INTERNAL

Identification of potential hydrogen supplier countries

Levelised cost of on-site green hydrogen production

30 Source: Jensterle et al. 2019 (LUT-model)

Identification of potential hydrogen supplier countries

Source: Jensterle et al. 2019 (LUT-model)

High Demand for Renewable Energy

Import of PtX products as one promising pathway

- "The import of PtX products from countries with high renewable energy potentials to countries with high energy demand presents a promising pathway."
- Which PtX energy carriers qualify suitable for longdistance transport?
 - Methane, methanol, ammonia, liquefied hydrogen and hydrogen bound in LOHC*
 - Energy and cost efficiency
 - Influence of fluctuating renewables
 - Case study for transport Marocco → Germany

Source: Hank et al. 2020 - based on Fasihi et al. 2020

Source: Hank et al. 2020 - Energy efficiency and economic assessment of imported energy carriers based on renewable electricity - SUBMITTED

High Demand for Renewable Energy

FHG-SK: ISE-INTERNAL

Import of PtX products as one promising pathway

- Production costs: 124 – 156 € per MWh
- Ship transport does not significantly affect costs and efficiency of the PtX pathways (MAR to GER ~ 4000km)
- Water provision via desalination with negligible impact on pathway efficiency and costs
- High initial investment for LOHCmedium (DBT)
- Boil-off of LH2 is considered to be used in a H2-gas motor

High Demand for Renewable Energy

Germany: Import of PtX products as promising pathway

- Production costs between: 124 – 156 € per MWh
- Ship transport does not significantly effect costs and efficiency of the PtX pathways (MAR to GER ~ 4000km)
- Energy density of transported energy carrier is the important parameter
- Longer transport distances increase the cost difference between energy carriers (JPN to AUS ~ 6600 km)

Conclusions

Global trade of renewable energy is required and is beginning now

- The transformation of energy systems in line with GHG emission targets is technically feasible
- National politics must develop clear pathes and targets for GHG neutrality and set-up an effective regulatory framework (taxes, levies, incentives, etc.) to achieve the targets
- The importance of electric energy is increasing and renewables (solar, wind) will be dominant
- Renewable Electricity in Power-to-X Applications is increasing
 - Coupling of sectors: electricity use (directly, indirectly) for heat, chemistry and mobility
 - Large scale conversion of renewable electricity into synthetic energy carriers (H2, liquid fuels)
 - Transformation is cost competitive if CO₂ emissions appropriately penalized
- Internationally harmonized and certified standards with a strong governance frameworks are needed for hydrogen-based energy carriers and chemicals
- International research cooperations and energy partnerships are a prerequisite for faster progress, longterm trading relationships and a secure investment environment

Thank You for Your Attention

Fraunhofer Institute for Solar Energy Systems christopher.hebling@ise.fraunhofer.de, www.ise.fraunhofer.de