平成20年度戦略的技術開発委託費
医療機器開発ガイドライン策定事業
(医療機器に関する技術ガイドライン作成のための支援事業)

医療機器評価指標ガイドライン
体内埋め込み型材料分野（高生体親和性インプラント）
開発WG報告書

平成21年3月

独立行政法人 産業技術総合研究所
体内埋め込み型材料（高生体親和性インプラント）開発WG委員名簿

（敬称略、※座長）

<table>
<thead>
<tr>
<th>姓名</th>
<th>所属</th>
<th>職名</th>
</tr>
</thead>
<tbody>
<tr>
<td>勝吕 徹</td>
<td>東邦大学 医学部 整形外科 教授</td>
<td></td>
</tr>
<tr>
<td>龍 順之助</td>
<td>日本大学 医学部 整形外科 教授</td>
<td></td>
</tr>
<tr>
<td>松下 隆</td>
<td>帝京大学 医学部 整形外科 教授</td>
<td></td>
</tr>
<tr>
<td>安永 裕司</td>
<td>広島大学大学院 医歯薬学総合研究科 教授</td>
<td></td>
</tr>
<tr>
<td>濱田 良機</td>
<td>山梨大学 医学部 整形外科 教授</td>
<td></td>
</tr>
<tr>
<td>齋藤 知行</td>
<td>横浜市立大学大学院 医学研究科 教授</td>
<td></td>
</tr>
<tr>
<td>綾田 弘美</td>
<td>埼玉医科大学 医学部 整形外科 教授</td>
<td></td>
</tr>
<tr>
<td>尹部 慶</td>
<td>北里大学 医学部 整形外科 准教授</td>
<td></td>
</tr>
<tr>
<td>村瀬 剛</td>
<td>大阪大学大学院 医学系研究科 器官制御外科学 講師</td>
<td></td>
</tr>
<tr>
<td>村上 輝夫</td>
<td>九州大学大学院 工学研究院 機械工学部門 教授</td>
<td></td>
</tr>
<tr>
<td>松下 富春</td>
<td>中部大学 生命健康科学部 教授</td>
<td></td>
</tr>
<tr>
<td>久森 紀之</td>
<td>上智大学 理工学部 機械創造理工学科 准教授</td>
<td></td>
</tr>
<tr>
<td>住谷 健二</td>
<td>瑞穂医科工業株式会社 開発部 インプラント製品開発グループマネージャー</td>
<td></td>
</tr>
<tr>
<td>石坂 春彦</td>
<td>ナカシマメディカル株式会社 薬事グループ課長</td>
<td></td>
</tr>
<tr>
<td>大森 健一</td>
<td>小林製薬株式会社 小林メディカルカンパニー 製品開発センター 技術顧問</td>
<td></td>
</tr>
<tr>
<td>佐藤 徹</td>
<td>株式会社オーミック 代表取締役社長</td>
<td></td>
</tr>
<tr>
<td>上野 勝</td>
<td>日本メディカルマテリアル株式会社 研究部 責任者</td>
<td></td>
</tr>
</tbody>
</table>

開発WG事務局

岡崎 義光 産業技術総合研究所 人間福祉医工学研究部門

体内埋め込み型材料（高生体親和性インプラント）開発 WG 会議開催日

第1回開発WG会議
開催日 平成20年11月26日（水）

第2回開発WG会議
開催日 平成21年1月9日（金）

第3回開発WG会議
開催日 平成21年2月4日（水）
目 次

1. 当該技術分野の概要 .. 1
2. 開発ガイドラインの基本的な考え方の作成の意義 ... 1
3. 平成20年度ガイドラインの検討概要 .. 2
3.1 平成20年度における検討内容 .. 4
4. 平成20年度ガイドラインの検討過程 .. 4
5. 平成20年度の検討結果 ... 6
5.1 高生体親和性インプラントの開発に関する基本的な考え方及び実証試験 7
5.2 今後の実施内容

高生体適合性インプラントの開発に関する基本的な考え方 .. 7

参考資料
1. 当該技術分野の概要
社会の高齢化が進行し、身体の機能を補うために生体内に骨接合用品および人工関節などのインプラント製品を埋入（インプラント）する手術が急速に増加する傾向にある。2015年には、2,500億円の市場規模になることが予測されている。わが国では、先進的な技術を保有しており、高性能な製品を開発する技術は世界のトップレベルにある。

使用量の増加に伴い、患者個々の骨格・骨質・症状等にあわせた高生体適合性インプラントが求められている。

2. 開発ガイドラインの基本的な考え方の作成の意義
本開発ガイドラインの基本的な考え方の目的は、わが国におけるこの分野の研究開発を活性化し、早期に多品目の製品を実用化することで、国民に高度な医療を提供することにある。
特に、20年以上の臨床成績が必要なものを短期臨床試験で評価することは、事実上困難となる場合が多いため、前臨床試験による評価の充実は重要となる。

整形外科インプラントを必要とする患者の急速な増加に伴い、安全性等に関する基本的な機能を十分に満足しつつ、さらに、患者個々の骨格・骨質・症状等にあわせた高生体適合性インプラントが求められている。高生体適合性インプラントの活用により、低侵襲手術の実現、早期リハビリの実現、インプラントの長寿命化（耐用年数の増加）、再置換手術の減少、
再手術のしやすさ及び成績向上等数々の患者に対するメリットが増加する。

３．平成20年度ガイドラインの検討概要

本ガイドラインの基本的な考え方は、高生体適合性インプラント（骨接合材料及び人工関節）を開発する際に必要となる試験に関する考え方及び推奨項目をまとめることを目的として検討を進めることとした。3回の開発WG委員会を開催（11月26日、1月9日、2月4日）し、全体の進め方の検討、および開発ガイドラインの基本的な考え方などを中心に議論した。また、可能な限り耐久性を中心に実証試験を実施した。

主な検討内容としては、患者個々の求める性能と骨格構造に最適化された高生体適合性インプラントを開発する際に有用となる考え方、必要性な症例のイメージ、技術動向、試験項目及び推奨項目などに関して検討を進めることとした。本年度は、必要性、適合性、必要な技術イメージ、必要な症例のイメージ、製品イメージなどを中心に議論した。

３．平成20年度における検討内容

（1）開発ガイドラインの適応範囲

高生体適合性インプラントとは、基本機能を維持しつつさらに個々の患者にあう性能及び骨格構造となるように最適化されたインプラントである。必要最小限の改善（ミニアリーモディフィア）を基本とし、インプラントが果すべき基本的な機能は変更されない。

（2）必要な技術イメージ

高生体適合性インプラント製品を製造するためには、例えば、以下の技術を必要とする。
①基本となるインプラントの販売・製造の実績を有する。
②患者の体形・骨格構造に応じて、最適な製品を提供可能にするシステムを有する。
③力学特性の解析及び設計・製造技術等を有する。
④製品の品質を検査できる技術を有する。
さらに、製品化に必要な技術を以下に示す。
①基本となる製品を製造できる技術
②医師との密接な連携により最適な製品を製造できる技術
③一定期間内に納入できる技術
④製品の安全性及び有効性を評価できる技術

（3）必要とする症例のイメージ

下記に示す要因などにより、骨形態及び骨質が正常と異なる症例においては、特に、高生体適合性インプラントが必要となる。

Ⅰ．先天異常
①骨・関節の先天異常
②骨・関節の発育異常
③先天性骨性疾患
④代謝性骨疾患等

Ⅱ．外傷
①骨折（変形治癒等）
②関節内骨折

Ⅲ．疾病
関節疾患
①感染症（重度骨欠損等）
②関節リウマチ（ムチランス型等）
③変形性関節症
④骨粗しょう症等
⑤その他

Ⅳ．再手術
①先行する骨切り手術後の再手術
②人工関節再置換

これらの疾患に基づくインプラント置換手術は、2015年までには35万件に急増する
とも言われている。これらの一定割合の症例においては、骨形態の異常により、高生体
適合性インプラントが必要と考えられる。特に、長寿命化の影響で再置換手術が増加傾
向にあり、高生体適合性インプラントの必要性が増加している。

(4) 高生体適合性インプラント製品のイメージ

１）骨接合材料
重度の骨形態異常及び骨粗しょう症などぜい弱な骨質患者の骨形状に最適な骨接合
材料（骨プレート、髖内釘、Compression Hip Screw(CHS)、ショートフェモラルネ
イル等）

２）下肢に使用される人工骨頭及び人工関節（股関節、膝関節、足関節及び足趾関節等）
骨関節変形に最適な人工関節（大腿骨の変形、重度の骨欠損等へ対応する製品）

３）上肢に使用される人工骨頭及び人工関節（肘、肩及び手指等）
外傷・リウマチ等により骨形態が正常と異なる場合の人工肘関節等（上腕骨システム
及び尺骨システム等）

４）その他、特殊例
移植骨と骨形成能を有する素材をコンピネーションさせた製品等

(5) 力学的性能試験
図2に例示したように高生体適合性インプラントは、必要最小限の変更により高い適
合性を得ることを目的とする。そのため、製品形状の改善により骨格構造との適合性は
向上するが、最適化による耐久性の低下はないものと考えられる。耐久性への影響が懸

念される場合には、力学試験、耐久性試験および力学シミュレーションによる強度評価を行う。

図2 高生体適合性インプラントの範囲

4. 平成20年度ガイドラインの検討過程
1.1 第1回開発WG会議
(1) 開催日時：平成20年11月26日（水）
(2) 配布資料
資料1-1 経緯説明資料（PP）
資料1-2 高生体親和性インプラント開発WG委員会
資料1-3 高生体親和性インプラントの開発に関する基本的な考え方（素案）
(3) 出席者
委員：勝呂徹（座長）、龍順之助、安永裕司、齋藤知行、占部憲、村瀬剛、村上市輝、
久森紀之、住谷健二、石坂昌彦、大森健一、佐藤徹、上野勝
経産省：島　真一朗
オブザーバー：追田秀行（国立医薬品食品衛生研究所）
事務局：岡崎義光（産業技術総合研究所）
(4) 議事概要
初年度の開催にあたり、委員の紹介後、座長として、東邦大学医学部整形外科勝呂徹先生
が選出された。
ガイドライン事業に関して、今までの経緯などが事務局より説明された。また、開発ガイ
ドラインの内容をイメージしやすくするために、事務局の資料に基づいて意見交換が行われた。}
ガイドラインの名称に関しては、生体適合性インプラントとして、パーソナライズドインプ
ラントを経験することの必要が高まるようなると想定するが、この意見が多かった。内容に関しては、従
来の腫瘍等に使用するカスタムメイド製品と異なり、患者個々の症例に応じて、基本的な機能
を維持しながら、患者個々の求める機能及び骨格適合性等を追加した高生体適合性インプ
ラントを開発する際に有用となる考え方、必要性が明確化できる記載、技術動向、試験項目及び推奨項目などに関して、2〜3年を目処に進めるることとした。

本年度は、必要性、適応範囲、必要性が明確化できる臨床例、製品イメージ、必要となる技術動向を中心にまとめることとした。本日の議論に基づき、臨床的な観点から必要性が明確化できる例について広く意見を求めることとした。また、関連文献等有用な情報を事務局に連絡することとし、また、開発の推奨項目を示すための実証試験を行うことが了承された。

最後に、「難しい内容ではあるが、産業に役立つ内容にまとめて欲しい。」との経済省からの要望があった。

1.2 第2回開発WG会議

(1) 開催日時：平成21年1月9日（金）
(2) 配布資料
 資料2-1 高生体適合性インプラントの開発に関する基本的な考え方（案）
 資料2-2 参考文献
(3) 出席者
 委員：勝呂徹（座長）、龍順之助、安永裕司、齋藤知行、占部憲、久森紀之、住谷健二、
 石坂春彦、大森健一、佐藤徹、浜田良機、上野勝、松下隆、松下富春
 経産省：島、真一朗
 オブザーバー：迫田秀行（国立医薬品食品衛生研究所）
 事務局：岡崎義光（産業技術総合研究所）

(4) 議事概要

患者個々の症例に応じて、基本的な機能を維持しながら、患者個々の求める機能及び
骨格適合性等を追加した高生体適合性インプラントを開発する際に有用となる考え方
に関して、必要性、適応範囲、必要性が明確化できる臨床例、製品イメージ、必要となる
技術を中心に議論した。

本日の議論に基づき、臨床的な観点から必要性が明確化できる例について広く意見を求
めることとした。

1.3 第3回開発WG会議

(1) 開催日時：平成21年2月4日（水）
(2) 配布資料
 資料3-1 高生体適合性インプラントの開発に関する基本的な考え方（案）
 資料3-2 参考資料
(3) 出席者
 委員：勝呂徹（座長）、龍順之助、安永裕司、齋藤知行（代理：齋藤 泉）、横浜市立大学医
 学部）、浜田良機（代理：杉山肇、山梨大学）、村瀬剛、久森紀之、住谷健二、
石坂春彦、大森健一、佐藤徹、上野勝、松下富春、松下隆

経産省：島 真一朗

オブザーバー：末岡明伯（医薬品医療機器総合機構）

迫田秀行（国立医薬品食品衛生研究所）

事務局：岡崎義光（産業技術総合研究所）

(4)議事概要

患者個々の症例に応じて、基本的な機能を維持しながら、患者個々の求める機能及び骨格適合性等を追加した高生体適合性インプラントを開発する際の際に有用となる考え方にに関して、必要性、適応範囲、必要性がイメージできる臨床例、製品イメージ、必要となる技術を中心に議論した。また、今年度の報告のまとめ方について事務局案を中心に議論した。

本日の議論に基づき、修正を行い、本年度の報告とすることが了承された。本委員会の結論としては、継続審議をお願いすることとした。今後の対応については、事務局及び委員長に一任された。

5．平成20年度の検討結果

平成20年度の成果として、高生体適合性インプラントを開発する際の基本的な考え方をとりまとめた。

5.1 高生体適合性インプラントの開発に関する基本的な考え方及び実証試験

高生体適合性インプラントを開発する際の際に有用となる考え方に関して、必要性、適応範囲、必要性がイメージできる臨床例、製品イメージ、必要となる技術を中心に議論した。実証試験として、国際的に評価の高い製品（3社）の人工関節で、実製品を用いた種々の強度試験及び振動部の耐久性試験を行い、その結果を基本的考え方方に反映させた。クロスリンク処理により振動部の耐久性が著しく改善できること、また、ハード-ハードの組み合わせでは、骨頭径及びカップ径の大きさにより、振動特性が著しく変化することを明らかにした。さらに、オキサイドジルコンイウムの表面性能及び振動部の耐久性を検討した。

5.2 今後の実施内容

高生体適合性インプラントの開発ガイドラインは、必要性が高いテーマであるとの意見が多く出され、継続審議をお願いすることとした。次年度においては、本年度の内容の詳細な検討及び性能試験項目の検討、シミュレーション等の実証試験を実施する予定である。
高生体適合性インプラントの開発ガイドラインに関する考え方

1. 必要性

本ガイドラインの基本的な考え方は、高生体適合性インプラント（骨接合材料及び人工関節）を発開する際に必要となる試験に関する考え方及び推奨項目をまとめることを目的とする。

整形外科インプラントを必要とする患者の急速な増加に伴い、安全性等に関する基本的な機能を十分に満足しつつ、さらに、患者個々の骨格・骨質・症状等に合わせた高生体適合性インプラントが求められている。高生体適合性インプラントの活用により、低侵襲手術の実現、早期リハビリの実現、インプラントの長寿命化（耐用年数の増加）、再置換手術の減少、再手術のしやすさ及び成績向上等数々の患者に対するメリットが増加する。

インプラント市場の予測

2. 適応範囲

高生体適合性インプラントとは、基本機能を維持しつつ、さらに個々の患者にあう性能及び骨格構造となるように最適化されたインプラントである。必要最小限の改善（ミニマリーモディファイド）を基本とし、インプラントが果すべき基本的な機能は変更されない。具体的には、患者個々の症状に応じて不適合な部分が存在する場合、部分的或いは最小限の改善を加えたインプラントを必要とする時に適応する。製造中止もしくは国内で発売中止となっ
た既存品で高度な機能の発揮が期待できる場合、又は既に承認されている有用な技術を活用し、高度な機能の改善が異なる部位であっても期待できる場合には適応される。

３．製造技術のイメージ

高生体適合性インプラント製品を製造可能にする技術イメージとして、高度な製造技術（短納期製造法等）、生体適合性の高い表面処理技術（骨伝導能の付与技術等）等がある。

例えば、以下の技術が必要となる。
①基本となるインプラントの販売・製造の実績を有する。
②患者の体形・骨格構造に応じて、最適な製品を提供可能にするシステムを有する。
③力学特性の解析及び設計・製造技術等を有する。
④製品の品質を検査できる技術を有する。

さらに、製品化に必要な技術を以下に示す。
①基本となる製品を製造できる技術
②医師との密接な連携により最適な製品を製造できる技術
③一定期間内に納入できる技術
④製品の安全性及び有効性を評価できる技術

図１ 製造システムの例
(c) 人工股関節

（近位形状の最適化）

(d) 人工膝関節

（脛骨トレイの厚みとステムの最適化）（上腕骨滑車欠損に対する最適化）

(e) 人工肘関節

図2 製品イメージの例

4. 必要とする症例のイメージ

下記に示す要因などにより、骨形態及び骨質が正常と異なる症例においては、特に、高生体適合性インプラントが必要となる。

I. 先天異常

①骨・関節の先天異常
②骨・関節の発育異常
③先天性骨系続疾患
④代謝性骨疾患等

II. 外傷

①骨折（変形治癒等）
②関節内骨折

III. 疾病

関節疾患

①感染症（重度骨欠損等）
②関節リウマチ（ムチランス型等）
③変形性関節症
④骨粗しょう症等
⑤その他

IV. 再手術
①先行する骨切り手術後の再手術
②人工関節再置換
これからの疾患に基づくインプラント置換手術は、2015年までには35万件に急増するとも言われている。これからの一定割合の症例においては、骨形態の異常により、高生体適合性インプラントが必要と考えられる。特に、長寿命化の影響で再置換手術が増加傾向にあり、高生体適合性インプラントの必要性が増加している。

5. 高生体適合性インプラントを必要とする症例イメージ
以下に、高生体適合性インプラントが必要な症例のイメージを示す。

高生体適合性インプラント（骨接合材料）の適応症例①
大腿骨変形治療（矯正骨切り術）

高生体適合性インプラント（人工股関節）の適応症例②
右：変形性股関節症（臼蓋形成不全）
左：先天性股関節脱臼（高位脱臼）
高生体適合性インプラント（人工膝関節）の適応症例③
大腿骨遠位骨折変形治癒後の変形性膝関節症

A及びB：重度変形膝関節症
C及びD：感染例、インプラント抜去後、セメントビーズにて再置換
（セメントビーズ除去後に生じる重度な骨欠損のため必要）
6. 高生体適合性インプラント製品イメージ

1) 骨接合材料
重度の骨形態異常及び骨粗しょう症などざい弱な骨質患者の骨形状に最適な骨接合材料（骨ブレート、髄内釘、Compression Hip Screw(CHS)、ショートフェモラルネイル等）

2) 下肢に使用される人工骨頭及び人工関節（股関節、膝関節、足関節及び足趾関節等）
骨関節変形に最適な人工関節（大腿骨の変形、重度の骨欠損等に対応する製品）

3) 上肢に使用される人工骨頭及び人工関節（肩、肘及び手指等）
外傷・リウマチ等により骨形態が正常で異なる場合の人工肘関節等（上腕骨ステム及び尺骨ステム等）

4) その他、特殊例
移植骨と骨形成能を有する素材とをコンビネーションさせた製品等

表1 高生体適合性インプラントにおける既承認品からの最適化の例

<table>
<thead>
<tr>
<th>骨ブレート</th>
<th>骨接触面を骨形状に適合</th>
<th>穴位置、穴数、長さの変更</th>
</tr>
</thead>
<tbody>
<tr>
<td>髄内釘</td>
<td>曲率を骨形状に適合</td>
<td>穴位置、穴数、太さ、長さの変更</td>
</tr>
<tr>
<td>CHS 及びショートフェモラルネイル</td>
<td>頚体角を骨形状に適合</td>
<td>ラグスクリューの形状及びブレート部やネイル部の穴位置、穴数、長さの変更</td>
</tr>
<tr>
<td>人工股関節（人工骨頭）</td>
<td>寛骨臼コンポーネント</td>
<td>大腿骨コンポーネント</td>
</tr>
<tr>
<td></td>
<td>カップ形状の最適化（体積の増加等）</td>
<td>頚体角の適合</td>
</tr>
<tr>
<td></td>
<td>近位</td>
<td>遠位</td>
</tr>
<tr>
<td></td>
<td>外側、内側、前方の最適化</td>
<td>長さ、太さの最適化</td>
</tr>
<tr>
<td>人工膝関節</td>
<td>大腿骨コンポーネント</td>
<td>尺骨コンポーネント</td>
</tr>
<tr>
<td></td>
<td>厚み、ステム太さ及び長さを骨形状に適合</td>
<td>膝骨トレイ形状の最適化（厚みの増加等）</td>
</tr>
<tr>
<td></td>
<td>施工の太さ、長さを骨形状に適合</td>
<td></td>
</tr>
<tr>
<td>人工肘関節</td>
<td>上腕骨コンポーネント</td>
<td>尺骨コンポーネント</td>
</tr>
<tr>
<td></td>
<td>ステムの太さ、長さを骨形状に適合</td>
<td>ステムの太さ、長さを骨形状に適合</td>
</tr>
<tr>
<td></td>
<td>頚部の形状最適化（骨欠損に合わせた形状の変更）</td>
<td>頚部厚みの増加等</td>
</tr>
</tbody>
</table>
7. 力学的性能試験

図2に示したように高生体適合性インプラントは、必要最小限の変更により高い適合性を得ることを目的とする。そのため、製品形状の改善により骨格構造との適合性は向上するが、最適化による耐久性的低下はないものと考えられる。耐久性への影響が懸念される場合には、力学試験、耐久性試験および力学シミュレーションによる強度評価を行う。

図2 高生体適合性インプラントの範囲

短納期製造プロセスにおいては、必要に応じて製造プロセスでのリスクを最小にするために、関連通知、関連JIS等を用いて評価すべき項目を体系化することが必要となる。次年度において詳細に検討予定。
8. 関連通知

(1) 平成16年11月15日付け医療機器審査No.19 厚生労働省医薬食品局審査管理課医療機器審査管理室事務連絡別添の「医療用具の製造（輸入）承認申請書における原材料記載について」

(2) 平成12年3月28日付け医薬審第526号 厚生省医薬安全局審査管理課長通知「整形インプラント製品の承認申請に係る取扱いについて」

(3) 平成12年12月28日付け医療機器審査No.29 厚生省医薬安全局審査管理課事務連絡「整形インプラント製品の承認申請に係る取扱いに関するQ&Aについて」

(4) 平成17年2月16日付け薬食機発第0216001号 厚生労働省医薬食品局審査管理課医療機器審査管理室長通知「医療機器の製造販売承認申請に際し留意すべき事項について」

(5) 平成17年2月16日付け薬食機発第0216003号 厚生労働省医薬食品局審査管理課医療機器審査管理室長通知「医療機器の製造販売承認申請書添付資料概要作成の手引きについて」

(6) 平成17年3月31日付け薬食療第0331038号 厚生労働省医薬食品局長通知「医療機器の安全性に関する臨床試験の実施の基準に関する省令の施行について」

(7) 平成15年2月13日付け薬食療第0213001号 厚生労働省医薬局審査管理課長通知「医療用具の製造（輸入）承認申請に必要な生物学的安全性試験の基本的考え方について」

(8) 平成15年3月19日付け医療機器審査No.36 厚生労働省医薬局審査管理課事務連絡「生物学的安全性試験の基本的考え方に関する参考資料について」

(9) 平成20年10月8日付け薬食療第1008001号「整形インプラント製品の承認申請に際し添付すべき臨床試験の試験成績に関する資料の取り扱いについて」

(10) 平成20年8月4日付け薬食療第0804001号「医療機器に関する臨床試験データの必要な範囲について」

(11) 平成21年3月6日付け厚生労働省医薬食品局審査管理課医療機器審査管理室事務連絡「人工膝関節の審査ガイドラインに関する質疑応答集（Q&A）」

(12) 平成21年3月6日付け薬食療第0306004号「人工膝関節の審査ガイドラインについて」

(13) 平成21年3月6日付け厚生労働省医薬食品局審査管理課医療機器審査管理室事務連絡「人工股関節の審査ガイドラインに関する質疑応答集（Q&A）」

(14) 平成21年3月6日付け薬食療第0306001号「人工股関節の審査ガイドラインについて」

(15) 平成21年3月6日付け厚生労働省医薬食品局審査管理課医療機器審査管理室事務連絡「脊椎内固定器具の審査ガイドラインに関する質疑応答集（Q&A）」

(15) 平成21年3月6日付け薬食療第0306007号「脊椎内固定器具の審査ガイドラインについて」
9．関連JIS

(1) JIS T 0301：2000 金属系インプラント材料の細胞適合性評価方法
(2) JIS T 0302：2000 金属系生体材料のアノード分極試験による耐食性の評価方法
(3) JIS T 0303：2000 人工関節用材料のビンオンディスク法による摩耗試験方法
(4) JIS T 0304：2002 金属系生体材料の溶出試験方法
(5) JIS T 0305：2002 擬似体液中での異種金属間接触腐食試験方法
(6) JIS T 0306：2002 金属系生体材料の不動態皮膜のX線光電子分光法(XPS)による状態分析
(7) JIS T 0993-1：2005 医療機器の生物学的評価—第1部：評価及び試験
(8) JIS T 7401-1：2002 外科インプラント用チタン材料—第1部：チタン
(9) JIS T 7401-2：2002 外科インプラント用チタン材料—第2部：Ti-6Al-4V合金展示材
(10) JIS T 7401-3：2002 外科インプラント用チタン材料—第3部：Ti-6Al-2Nb-1Ta合金展示材
(11) JIS T 7401-4：2002 外科インプラント用チタン材料—第4部：Ti-15Zr-4Nb-4Ta合金展示材
(12) JIS T 7401-5：2002 外科インプラント用チタン材料—第5部：Ti-6Al-7Nb合金展示材
(13) JIS T 7401-6：2002 外科インプラント用チタン材料—第6部：Ti-15Mo-5Zr-3Al合金展示材
(14) JIS T 7402-1：2005 外科インプラント用コバルト基合金—第1部：コバルト-クロム-モリブデン合金展示材
(15) JIS T 7402-2：2005 外科インプラント用コバルト基合金—第2部：コバルト-クロム-モリブデン合金展示材
(16) JIS T 7402-3：2005 外科インプラント用コバルト基合金—第3部：コバルト-クロム-タンゲステン-ニッケル合金展示材
(17) JIS T 7402-4：2005 外科インプラント用コバルト基合金—第4部：コバルト-クロム-ニッケル-モリブデン-鉄合金展示材
(18) JIS T 7403-1：2005 外科インプラント用鉄基合金—第1部：ステンレス鋼
(19) JIS T 7403-2：2005 外科インプラント用鉄基合金—第2部：高窒素ステンレス鋼
(20) JIS G 0577：2005 ステンレス鋼の孔食評価測定方法
(21) JIS Z 2241：1998 金属材料引張試験方法
(22) JIS Z 2244：2009 ビッカース硬さ試験—試験方法
(23) JIS K 7113：1995 プラスチックの引張試験法
(24) TS T 0011：2008 骨組織の薄切標本の作成方法
(25) JIS T 3011：2009 金属製骨ねじの試験方法
(26) JIS T 3012：2009 金属製骨接合用品の曲げ試験方法
(27) JIS T 0313：2009 金属製骨接合用品の圧縮曲げ試験方法
10. 関連開発ガイドライン

(1) 体内埋め込み型材料分野（次世代高機能人工股関節）開発ガイドライン 2008

(2) 体内埋め込み型材料分野（ハイブリッド型人工骨・骨補填材）開発ガイドライン 2008
参考資料
体内埋め込み型材料分野
高生体適合性インプラント 開発WG

座長
杉本 嗣
東邦大学 医学部 整形外科 教授

副座長
藤原 諭
日本大学 医学部 整形外科 教授

松下 昌
帝京大学 医学部 整形外科 教授

安永 稔司
広島大学大学院 医学部 人工骨・生体材料学 教授

藤田 良樹
山梨大学 医学部 整形外科 教授

宮本 久行
横浜市立大学 医学部 整形外科 教授

側田 弘美
埼玉医科大学 整形外科 教授

占部 豊
北里大学 医学部 整形外科 准教授

村瀬 剛
大阪大学大学院 医学系研究科 皮膚科基礎外科 学講師

村上 輝夫
九州大学大学院 医学系システム部門 材料・生体機能学講座 教授

松下 富春
中部大学 生命健康科学部 教授

久保 美之
上智大学 理工学部 機械システム工学科 人間科学系研究グループ 助教

住谷 晃二
塩野義製薬工業株式会社 製薬開発部 インプラント製品開発グループマネージャー

石脇 春彦
ナカメメディカル株式会社

大森 健一
小林製薬株式会社 小林メディカルカンパニー 製品開発センター 技術開発

佐藤 他
株式会社オーミックス 常務取締役

上野 勝
日本メディカルテクノロジー株式会社 研究部

経済産業省

横尾 大也
加藤 弘
島 真一

清丸 勝正
加藤 二子

国立医薬品食品衛生研究所

土屋 利江
遠田 秀行

医薬品医療機器総合機構

末木 明宏

産業技術総合研究所

木間 一弘

岡崎 光明（WG担当）

骨格構造：東洋人と欧米人で異なる
⇒アジア共通の問題
⇒少し変更するだけでベストな製品となる

1. 骨接合材料
骨接合に合わせて安定して固定

2. 人工股関節
近位の形態が異なる

3. 人工関節

・膝屈曲（正立、給式トイレなど）を必要
・手術及び再置換のタイミングが遅れ、大きな
・骨欠損が生じやすい

患者個々の骨格・骨質・症状等に合わせた高生体
適合性インプラントが必要

・インプラント置換手術は、2015年までには36万
件に急增。
・これらの一定要因の症例においては、骨形態の
異常に伴い、高生体適合性インプラントが必要
特に、骨修復化により再置換手術が増加傾向に
あり必要性が増大。
次世代審査機関評価規準を満たした審査機関開発ガイドライン検査検討会

体内埋め込み型材料（高生体適合性インプラント）開発WG

1. 平成20年度の活動

- 開発WG
 - 3回開催（11月26日、1月9日、2月4日）
 - 全体の進め方の検討
 - 開発ガイドラインの考え方を検討
 - 実証試験の実施

2. 平成20年度における検討内容

- 最も重要な要素として、高生体適合性インプラント開発する時に重要となる考え方、必要性の高い症例のイメージ、技術動向、試験項目及び推奨項目などに関して検討を進むこととしました。
- 本年度は、必要性、適応範囲、必要な症例のイメージ、製品イメージなどを中心に推進しました。

3. 年次計画における検討内容

- 本年度の内容の詳細な検討及び性能試験項目の検討、シミュレーション等の実証試験の実施。

平成20年度の開発WG成果

高生体適合性開発ガイドラインの考え方の骨子

(1) 必要性

整形インプラントを必要とする患者の急速な増加に伴い、安全性等に関する基本的な機能を十分に満足しつつ、さらに、患者個々の骨形・骨格・症状等に合わせた高生体適合性インプラントが求められている。高生体適合性インプラントの活用により、侵襲最小化の実現、早期リハビリの実現、インプラントの長寿命（耐折断数の増加）、再置換手術の減少、再手術のしやすさ及び成績向上等数々の患者に対するメリットが増大する。

(2) 適応範囲

高生体適合性インプラントとは、個々の患者にあう性質と骨格構造がより適したインプラントである。本年度の考え方に基づく、必要性の高い改善（ミニマリーモービリディ法）を基本とする。

(3) 必要とする症例のイメージ

骨形態及び骨質が正常と異なる症例において、特に、高生体適合性インプラントが用いられる。

I. 応用異常
 ①骨・関節の先天異常
 2. 骨・関節の発育異常
 3. 先天性骨格系疾患
 4. 遺伝性骨疾患
 5. 外観損傷
 6. 腦性関節症
 7. 関節リウマチ（メチレンス型）
 8. 関節性骨軟骨症
 9. 畸形性関節症
 10. 骨粗しょう症
 11. その他

IV. 再手術
 1. 先行する骨切り手術後の再手術
 2. 人工関節再置換

(4) 高生体適合性インプラント製品イメージ

１. 骨接合材料: 重度の骨頭異常及び骨頭しこり症などに骨を骨形態に最適な骨接合材料

２. 下肢に使用される人工骨頭及び人工関節（股関節、膝関節、足関節及び足趾関節等）

３. 上肢に使用される人工関節（肩、肘及び手指等）

外傷リウマチ等により骨形態が正常と異なる人工関節（上腕骨及び尺骨等）

4. その他、特徴性、移植骨と骨形態能を有する材料をコンポジション材料等

(5) 力学的性質試験

(6) 開発過程、関連JSS等
高生体適合性インプラントの適応症例のイメージ

必要な症例イメージ

I. 先天異常
 1. 骨・関節の先天異常
 2. 前・後肢の発育異常
 3. 外傷性骨軟骨病
 4. 代謝性骨疾患等
II. 外傷
 1. 骨折（変形治療等）
 2. 関節内骨折
III. 疾病
 ① 感染症（重篤不治症等）
 ② 関節リウマチ（リウマチ症等）
 ③ 変形性関節症
 ④ 骨粗しょう症等
 ⑤ その他
IV. 再手術
 ① 先行する骨切り手術後の再手術
 ② 人工関節再置換

人工股関節の適応症例 ①
特徴的な人工関節が必要

人工膝関節の適応症例 ③
感染例：重篤な骨欠損のためインプラント抜去後セメントピースにて再置換
セメントピース除去後に生じる重篤な骨欠損のため必要

大頭骨骨折後変形治療後の
変形性膝関節症
人工膝関節の設置と骨頭の再建が困難

人工膝関節の適応症例 ②

人工膝関節の適応症例 ①
医療機器のクラス分類と薬事申請での分類

<table>
<thead>
<tr>
<th>クラス</th>
<th>分類</th>
<th>例</th>
<th>薬事申請での分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅰ</td>
<td>不具合が生じた場合でも、人体へのリスクが極めて低いもの。</td>
<td>血液分析装置等体外診断装置、X線フィルム、メス、ハサミ等、歯科技工用品等</td>
<td>一般医療機器
承認不要</td>
</tr>
<tr>
<td>Ⅱ</td>
<td>不具合が生じた場合でも、人体へのリスクが比較的低いもの。</td>
<td>MRI等画像診断装置、電子内視鏡、消化器用カテーテル、超音波診断装置、歯科用合金等</td>
<td>管理医療機器
厚生労働大臣が基準を定めた品目
承認基準品目
承認対象品目</td>
</tr>
<tr>
<td>Ⅲ</td>
<td>不具合が生じた場合、人体へのリスクが比較的高いもの。</td>
<td>整形インプラント、透析器、バルーンカテーテル、コンタクトレンズ等</td>
<td>高度管理医療機器
厚生労働大臣による承認</td>
</tr>
<tr>
<td>Ⅳ</td>
<td>不具合が生じた場合、生命の危険に直結する恐れがあるもの。</td>
<td>人工心臓弁、ベースメーカー、ステント等</td>
<td>薬事申請での分類</td>
</tr>
</tbody>
</table>
力学シミュレーションの例

(a) CHS (b) HSN (c) 人工骨頭：BP (d) 人工股関節：THA

大腿骨転子部骨折のEvans分類を用いた力学シミュレーションの解析

Type C, Type D, Type Eの力学シミュレーションを実施
インプラント設置状態および骨質変化を考慮した力学シミュレーションの解析

(a) 人工骨頭

<table>
<thead>
<tr>
<th>インプラント固定方法</th>
<th>セメントレス</th>
<th>セメント使用</th>
</tr>
</thead>
<tbody>
<tr>
<td>若年層</td>
<td></td>
<td></td>
</tr>
<tr>
<td>老化層の摘出後</td>
<td>老化層の摘出後</td>
<td>セメント厚片削5mm</td>
</tr>
<tr>
<td>高齢層</td>
<td></td>
<td></td>
</tr>
<tr>
<td>老化層の摘出後</td>
<td>老化層の摘出後</td>
<td>セメント厚片削5mm</td>
</tr>
<tr>
<td>超高齢層</td>
<td></td>
<td></td>
</tr>
<tr>
<td>老化層の摘出後</td>
<td>老化層の摘出後</td>
<td>セメント厚片削5mm</td>
</tr>
<tr>
<td>底面厚さ50%減少</td>
<td>底面厚さ50%減少</td>
<td>底面厚さ50%減少</td>
</tr>
</tbody>
</table>

(b) 人工股関節

<table>
<thead>
<tr>
<th>インプラント固定方法</th>
<th>セメントレス</th>
<th>セメント使用</th>
</tr>
</thead>
<tbody>
<tr>
<td>正常</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ステムポーラス部の摘出後 老化層の削除</td>
<td>ステム全撤去レシービング</td>
<td>セメント厚片削5mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TypaG</td>
</tr>
<tr>
<td>異常</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ステムポーラス部の摘出後 老化層の削除</td>
<td>異常中心からのステム上方に45%の領域にレシービング</td>
<td>セメント厚片削5mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TypaH</td>
</tr>
<tr>
<td>特異</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ステム全撤去レシービング</td>
<td>ステム全撤去レシービング</td>
<td>セメント厚片削5mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TypaF</td>
</tr>
</tbody>
</table>

解析条件①

13° 1,500N (a) CHS
13° 1,500N (b) HSN
解析条件②

(c) 人工骨頭
(d) 人工股関節

解析結果①（CHSの相当応力分布）

Type C
Type D
Type E
解析結果②（人工股関節の相当応力分布）

Type G
Type H
Type I

Type J
Type K
Type L

股関節の動きをシミュレートする波形および負荷条件

(a) 荷重の変化
(b) 変位の変化

- 周波数：1 Hz
- 測定サイクル：100万回毎
 → 5 x 10^6 回まで

\[\text{負荷荷重} \times \text{KN} \]
\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \]

\[\text{変位の変化} \times \text{度} \]
\[0 \quad 10 \quad 20 \quad 30 \]

AB — 外転
AD — 内転
E — 伸長
F — 屈曲
IR — 内向き回転
OR — 外向き回転
実証試験：摺動部の耐久性のまとめ①

体積摩耗量 \(\pi (d/2)^2 \times a \) (mm)

- 骨吸収を起こさない臨床での線摩耗量
 \(a = 0.1 \text{ mm} / \text{年以下} \)
 \(\rho = 0.936 \text{ mg/mm}^3 \)
 1年：100万サイクル

<table>
<thead>
<tr>
<th>骨頭径</th>
<th>22 mm</th>
<th>26 mm</th>
<th>28 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>周摩耗量 (mg)</td>
<td>36</td>
<td>50</td>
<td>58</td>
</tr>
</tbody>
</table>

- クロスリンク処理
 長寿命化（低摩耗化）にかなり期待
人工関節からの金属イオンの溶出(症例報告のまとめ)

<table>
<thead>
<tr>
<th>材料</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>ステンレス製 Hip</td>
<td>20</td>
</tr>
<tr>
<td>Co-Cr-Mo(ASTM F 75)</td>
<td>160</td>
</tr>
<tr>
<td>うち Metal on metal</td>
<td>92</td>
</tr>
<tr>
<td>コントロール</td>
<td>68</td>
</tr>
<tr>
<td>Ti-6Al-4V Hip</td>
<td>42</td>
</tr>
<tr>
<td>Knee</td>
<td>42</td>
</tr>
<tr>
<td>コントロール</td>
<td>21</td>
</tr>
<tr>
<td>計</td>
<td>284例</td>
</tr>
</tbody>
</table>

ステンレスからのNiの溶出：極小
Ti-6Al-4VからのVの溶出：極小

膝関節の動きをシミュレーションする波形および負荷条件

(a) 荷重制御

(b) 変位制御
実証試験: 摺動部 (オキサイドジルコニウム)の耐久性のまとめ②

(a)

(b)

摺動特性: Co-Cr-Mo合金と同等以上

外科学用関連JIS規格一覧

JIS T 7401-1:2002 外科インプラント用チタン材料-第1部:チタン
JIS T 7401-2:2002 外科インプラント用チタン材料-第2部: Ti-6Al-4V合金展伸材
JIS T 7401-3:2002 外科インプラント用チタン材料-第3部: Ti-6Al-2Nb-1Ta合金展伸材
JIS T 7401-4:2002 外科インプラント用チタン材料-第4部: Ti-15Zr-4Nb-4Ta合金展伸材
JIS T 7401-5:2002 外科インプラント用チタン材料-第5部: Ti-6Al-7Nb合金展伸材
JIS T 7401-6:2002 外科インプラント用チタン材料-第6部: Ti-15Mo-5Zr-3Al合金展伸材
JIS T 7402-1:2005 外科インプラント用コバルトクロム・モリブデン銅造合金
JIS T 7402-3:2005 外科インプラント用コバルト基合金-第3部: コバルト-クロム-タンクステン-ニッケル-合金展伸材
JIS T 7403-1:2005 外科インプラント用鈦基合金-第1部: ステンレス鋼
JIS T 7403-2:2005 外科インプラント用鈦基合金-第2部: 高密度ステンレス鋼
JIS T 0993-1:2005 医療機器の生物学的評価-第1部: 評価および試験方法
JIS T 0301:2000 金属系インプラント材料の細胞適合性評価方法
JIS T 0302:2000 金属系生体材料のアノード分極試験による耐食性の評価方法
JIS T 0303:2000 人工関節用材料のビンオンディスク法による摩耗試験方法
JIS T 0304:2002 金属系生体材料の溶出試験方法
JIS T 0305:2002 腦内用金属間接触腐食試験方法
JIS T 0306:2002 金属系生体材料の不動態皮膜のX線光電子分光法(XPS)による状態分析
JIS T 3011:2009 金属製骨接合用品の試験方法
JIS T 3012:2009 金属製骨接合用品の曲げ試験方法
JIS T 0313:2009 金属製骨接合用品の圧縮曲げ試験方法
JIS T 0011:2008 骨組織の厚切標本の作成方法
<table>
<thead>
<tr>
<th>開発ガイドライン</th>
<th>経済産業省のHPにて公開</th>
</tr>
</thead>
<tbody>
<tr>
<td>医療・福祉機器</td>
<td></td>
</tr>
</tbody>
</table>

【平成19年6月公表】
1. DNAチップ（PDF形式: 1300KB）
2. 業務用人工心臓システム（PDF形式: 330KB）

【平成20年6月公表】
3. ナビゲーション治療装置通販（PDF形式: 274KB）
4. 脳外科医療用システム（PDF形式: 259KB）
5. 関節療法用レーザーサンプルシステム（PDF形式: 221KB）
6. 次世代（高機能）人工心臓（PDF形式: 166KB）
7. ハイブリッド型人工心-血液透析（PDF形式: 183KB）
8. 超微細接触加工装置の設計ガイドライン（PDF形式: 1694KB）

この報告書は、平成20年度に独立行政法人産業技術総合研究所が、経済産業省からの委託を受けて実施した成果を取りまとめたものです。

一 禁無断転載一

平成20年度 戦略的技術開発委託費
医療機器開発ガイドライン策定事業
（医療機器に関する技術ガイドライン作成のための支援事業）
体内埋め込み型材料分野（高生体親和性インプラント）
開発WG報告書

連絡先
〒100-8901
東京都千代田区霞が関1-3-1
経済産業省商務情報政策局サービス産業課医療・福祉機器産業室
TEL：03-3501-1562
FAX：03-3501-6613
URL：http://www.meti.go.jp/

発行
〒305-8564
茨城県つくば市東1-1-1
独立行政法人産業技術総合研究所人間福祉医工学研究部門
医療機器開発ガイドライン検討実務委員会
TEL：029-861-7014
FAX：029-861-7014
E-Mail：human-ws@aist.go.jp