
Research paper

−197−Synthesiology - English edition Vol.3 No.3 pp.197-213 (Dec. 2010)

the components, and the behavior may not occur consistently
(inconsistency) according to the system specification. The
cooperative behavior by the system components is generally
tested in a system test conducted in the final phase of system
development where actual products of the components are
combined. In a case where inconsistency of the cooperative
behavior is detected in the system test, it is necessary to
return to the upstream of the system development and
redesign the cooperative behavior by the components. Large
amount of cost is required to correct such inconsistency.
When redesigning of the cooperative behavior occurs in
the final phase of system development, the reliability of the
system may be compromised. Although it is necessary to
design and verify the cooperative behavior by the system
components surely in the upstream of system development,
no method has been proposed for this purpose. The first
reason is that there has been no attention paid to the
cooperative behavior by the system components from the
perspective of the reliability of the system. The second reason
is that incorporating the quality of the system at the upstream
of system development is a relatively new concept. Therefore,
we study a methodology for decomposing a system
specification into component specifications and interface
specifications, and verifying consistency of their cooperative
behavior in the system design phase[5][6]. By developing
the components based on the specif ications where the
cooperative behavior is consistent, it is expected to improve
the reliability of the complex system. This methodoloy is
constructed by synthesizing architectural design methodTerm 8
in systems engineering[1] Term 7 and model checking[7] Term 9.

Systems engineering is technological methodologies for
achieving systems which satisfy the required quality
within a given budget and time period. The research of

1 Introduction

System is a combination of interacting elements organized
to achieve one or more stated purposesTerm 1[1]. Through
advances in technology, technological systems (or systems)
such as electronic equipment systemsTerm 2 or information
systemsTerm3 have become deeply ingrained in society. On the
other hand, the systems are getting more and more complex
with the sophistication of required functions and the advent
of system of systemsTerm 4 where a new system is formed by
multiple systems with different purposes. Recently, there are
many system failures due to their complexity. As seen in the
accident cases of irradiation device[2], explosion of Ariane
5[3], or disruption in air traffic control system[4], the failures
of complex systems have drastic inf luences on society.
Improving the reliability of complex systems is an important
issue in realizing a safe and secure society.

In the complex system, components of the system are
connected and cooperate with each other. For example, in
the case of the irregular-rigid-body-transport robot system
which is described in chapter 5, the integrated control
subsystem understands the surrounding situation based on
the results of measurement by the measurement subsystem,
and the robot subsystem operates accordingly. This is called
cooperative behaviorTerm 5 by components in this paper. In
detail, processings of the system component cooperate
with processings of the other system components through
the interface between components in order to achieve the
system function. In the complex system, it is important
that the cooperative behavior by the components occurs
consistently (consistencyTerm 6) according to the system
specification. However, due to its complexity, errors may
creep into the specifications for the cooperative behavior by

- Synthesis of architectural design method and model checking -

Atsushi Katoh＊ , Masataka Urago and Yoshiaki Ohkami

Graduate School of System Design and Management, Keio University　4-1-1 Hiyoshi, Kohoku-ku, Yokohama 223-8526, Japan
＊E-mail :

Original manuscript received January 19, 2010, Revisions received June 4, 2010, Accepted June 7, 2010

This paper describes a methodology for decomposing a system specification into component specifications and interface specifications
whose cooperative behavior is consistent with each component. The methodology is constructed by a bridge method of combining
architectural design method in systems engineering standards and model checking, which have already been confirmed to be effective
in developing systems. As a trial, the methodology was applied to develop an industrial robot system. The result demonstrates that the
proposed methodology is effective for complex industrial systems.

A methodology for improving reliability of complex systems

Keywords : Developing methodology, systems engineering, architectural design method, model checking, bridge method,
complex systems, reliability

[Translation from Synthesiology, Vol.3, No.3, p.197-212 (2010)]

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−198− Synthesiology - English edition Vol.3 No.3 (2010)

systems engineering were started mainly in the military and
aerospace fields, and systems engineering evolved through
the accumulating and reflecting of “best practices” of the
system development. The systems engineering process
is standardized as know-hows and rules independent of
technological f ields[8]-[10]. Architectural design method
is defined as a part of the systems engineering process.
Architectural designing is a method to al locate the
functions and performances required of a system to the
system components, and to define the specifications of
the components and the interface among the components.
By architectural designing according to the standardized
process, the complex system can be decomposed into its
components smoothly and surely. In this paper, standardized
architectural design method is simply called “architectural
design method”.

Model checking is a method to verify whether a given
property is valid or invalid in all possible state transitions
which can be achieved by the models which represent
the state t ransitions of the system, using a computer
exhaust ively. Model check ing is one of the for mal
methods[11] Term 10. Model checking is already established
as a verif ication method, and nowadays is popular in
software development. According to the functional safety
standard IEC 61508[12] Term 11, applying the formal method is
recommended for the system development, and it is gaining
attention as a method for achieving the high reliability of
the system. Whether the properties which must be satisfied
by the cooperative behavior is valid or not is thoroughly
verified by applying model checking to the specifications for
the cooperative behavior between components. As a result,
it is possible to detect inconsistency of the cooperative
behavior which may occur in the complex states.

Architectural design method is systematic knowledge
which is formed by collecting best practices in the system
design fields based on systems engineering. Model checking
is a research result which improves the reliability in the
system verif ication field, based on mathematical logic
and computer science. In this research, we aim to achieve
the high reliability in the complex systems, synthesizing
architectural design method and model checking, and
develop a methodology which utilizes the characteristic of
both methods. Our research corresponds to Type 2 Basic
Research which widely selects the knowledge of different
technological fields and synthesizes them to satisfy social
and economic needs.

This paper describes a methodology for decomposing
a system specif ication into component specif ications
and interface specif ications among components whose
cooperative behavior is consistent with each component. It
also describes the research process of this methodology. It is
structured as follows. Chapter 2 describes the research goal

and the research scenario. Chapter 3 describes architectural
design method and model checking. Chapter 4 describes the
synthesis process of architectural design method and model
checking. Chapter 5 describes the application of an industrial
use. Chapter 6 discusses the effectiveness and issues of this
methodology. Chapter 7 summarizes this paper and describes
the future work.

2 Research objective and research scenario

The objective of this research is to establish a methodology
for decomposing a system specification into component
specifications and interface specifications among components
whose cooperat ing behavior is consistent with each
component, which is not specific to particular technological
systems. Figure 1 shows the research scenario. For the
research scenario to achieve the research objective, the
methods whose effectiveness has been fully verified are
selected among the technological fields related to the system
development. The reason for this is that a high-quality
methodology can be established efficiently by employing
methods which are already recognized as being effective for
the system development. The methodology is established
by synthesizing the selected methods to maximize their
characteristics. The reason for this is that there is a possibility
to produce a new research or technological field through
developing a new technology by the synthesis of methods
from different researches or technological fields. Also, the
effectiveness of methodology is evaluated by applying this
methodology to an actual case in industry. There are two
reasons for selecting the industrial case as the application.
The first reason is that in order to evaluate the practical
applicability of this methodology in industry, it is necessary
to take a functionally complex case as the application to
consider safety, rather than a mere sample. The second reason
is that by propagating the effectiveness of this methodology
to industry, it may be possible to bridge the gap between the
research activities and the social contributions of the research
results, or the so-called valley of death.

3 Selection of methods

In establishing the methodology in this research, the
functions which must be satisfied by the methodology are

Fig. 1 Research scenario

 Method

Method

Method

Achievement of
research objective

Application of
methodology to
industrial case

Synthesis of
technologies utilizing
their characteristics

Selection of technologies
recognized to be effective

Technological field related
to system development

Research flow

Industrial
case

Establishment of
methodology in
this research

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−199−Synthesiology - English edition Vol.3 No.3 (2010)

divided as follows:

a. The function for decomposing a system specification into
component specifications and interface specifications
among components;

b. The function for verifying whether the cooperative
behavior of the component specifications and interface
specifications among components are consistent.

The system design mehod which satisf ies the function
“a” is selected among the system developing methods. In
general, system designing is a work for defining a system
specification by analyzing the user’s needs, and defining
specif ications for functions of the components which
compose the system, realization means of the components,
and relationship among the components, based on the system
specification. The representative method of system designing
other than architectural design method includes structured
analysis and structured design (SA/SD) method[13] Term 12. SA/
SD method is a design method where a system is decomposed
into components by focusing on data flows of the system. In
SA/SD method, the system is designed by focusing on the
data such as business information rather than the functions
and processings, because the data is stable against changes
in requirements or a technological evolution. This allows to
construct systems with maintainability and expandability.
However, since SA/SD method is developed primarily
for technological systems such as information systems, it
does not deal with control f lows or processing timing[14].
Therefore, it is inappropriate for designing anything other
than information systems such as embedded systems. On the
other hand, architectural design method requires more efforts
compared to the specific design method such as focusing
on the data as in the aforementioned example, because the
procedures and tasks specific to a certain designing are not
defined. However, architectural design method is a general
design method which is not dependent on some specific
technological systems where the process for defining functions
and realization means of the system are defined. Therefore,
taking into account the research objective of achieving a
methodology which is not specific to particular technological
systems, we select the architectural design method as the
system design method which satisfies function “a”. Also, the
representative systems engineering standards which defines
architectural design method include ISO 15288[9] Term 13, ANSI/
EIA 632[10] Term 14, and IEEE 1220[11] Term 15. While ISO 15288
can be applied to the entire system lifecycle process from the
conceptualizing phase to the dismantling phase, the tasks
and procedures of architectural designing are not finely
defined. While ANSI/EIA 632 can be applied widely to the
system lifecycle process from the conceptualizing phase to
the transition to operation phase, the tasks and procedures for
architectural designing are not finely defined. On the other
hand, although IEEE 1220 limits the range of application from
the system requirement analysis phase to the system test phase,

the tasks and procedures for architectural designing are finely
defined. Therefore, we select architectural design method
defined by IEEE 1220 for our methodology.

The system verification method which satisfies function
“b”. is selected among the system development methods. In
general, system verification is a work for verifying whether
a developed system satisfies the system specification or not.
The representative system verification methods other than
model checking include test methodTerm 16 and simulation
method[15] Term 17. Test method is a verification method for
verifying behavior of actual products against the test cases.
While it can verify the actual behavior of actual products, it
is difficult to extract all of the cases which may occur and to
verify the behavior in all possible cases. Simulation method
is a verification method where a target to be verified and
peripheral environment of the target is simulated as models
on a computer, and behavior of the models is verified against
the test cases. While it can verify the behavior of the target in
the early phase of system development when actual products
and peripheral environment do not exist, it is difficult to
extract all of the cases which may occur and to verify the
behavior in all possible cases, as in the test method. On the
other hand, although model checking can only verify state
transitions of a verification target, it can verify whether
the properties to be satisfied are valid or not for all state
transitions exhaustively. If there is a deadlockTerm 18 in state
transitions of a system, fatal accidents may occur during the
system operation. Therefore, we select model checking for
our methodology.

Next, architectural design method defined in IEEE 1220 and
model checking are described in detail.

3.1 Architectural design method in IEEE 1220
Figure 2 shows the architectural design process. Architectural
designing is composed of functional designingTerm 19 and
physical designingTerm 20. Functional designing is a work
where functions defined as a system specif ication are
decomposed and refined, and performances defined as
the system specification are allocated to the decomposed
and refined functions. Physical designing is a work where
system components are specified, and the functions and
performances decomposed and ref ined in functional
designing are allocated to the components. The outputs of
architectural designing are component specifications and
interface specifications among components.

Figure 3 shows the process of functional designing defined
in IEEE 1220. The process of functional designing is defined
in IEEE 1220 chapter 6 section 3 Functional analysisTerm 21.
Figure 4 shows the process of physical designing defined in
IEEE 1220. The process of physical designing is defined in
IEEE 1220 chapter 6 section 5 SynthesisTerm 22. By conducting
the tasks according to the numbers in Figs. 3 and 4, it is

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−200− Synthesiology - English edition Vol.3 No.3 (2010)

possible to decompose a complex system into its components
smoothly and surely. Architectural design method in IEEE
1220 has been used in various industrial fields, and has
produced results. Therefore, a certain level of effectiveness is
guaranteed[16].

3.2 Model checking
Figure 5 shows the process of model checking. The process
of model checking can be categorized into four works:
developing models, developing fomulae, conducting model
checking, and analizing the model checking results. First, state
transitions of a target to be verified are modeled based on the
target specification according to the expression form of a model

checking tool to be applied. Next, properties which must be
satisfied by the verification target are considered. Formulae
which express the properties are developed according to the
expression form of the model checking tool. Then, the models
and the formulae are input to the model checking tool on a
computer, and model checking is conducted. Model checking
verifies whether the models satisfy the properties expressed
by formulae or not in all state transitions achievable by the
models exhaustively. Finally, results of whether the models
satisfy the properties expressed by formulae or not are
analyzed based on outputs from the model checking tool. If
the models satisfy the formulae, it means that the specification
based on the models satisfy the properties. If the models do
not satisfy the formulae, the state transitions of the models
up to the state where the property is not valid are output as
the counterexamples, If no errors are found in the models

Fig. 2 Process of architectural designing

Fig. 4 Process of physical designing in IEEE 1220[11]

Developing
documentComponent

B
specification

Architectural
designing

Developing
activity

Workflow

interface
specification
between
components

Component
A

specification

System
specification

Physical designing

Functional designing

Define
subfunctions

Define
subfunctions

states and modes

Define functional
Failure modes
And effects

Define safety
monitoring
functions

6.3.2
Functional

decomposition 6.3.2.2

6.3.2.3 6.3.2.4 6.3.2.5 6.3.2.6

6.3.2.1

Analyze
functional
behaviors

Define
functional
interface

Allocate
performance
requirements

Functional analysis

6.3.1
Functional

context analysis

6.3

6.3.3

6.3.1.1 6.3.1.2 6.3.1.3

Define functional
timelines

Define data and
Control flows

Establish functional architecture

Fig. 3 Process of functional designing in IEEE 1220[11]

Assess technology
requirements

Define physical
Interfaces

Identify off-the-shelf
availability

Identify make or buy
alternatives

Group and allocate
functions

Synthesis

Identify design
solution alternatives

Assess safety and
environmental hazards

Assess life cycle quality
factors

Define design and
Performance
characteristics

Identify standardization
opportunities

6.5.8

6.5.11 6.5.12 6.5.13 6.5.14

6.5.15

6.5.16 6.5.17

6.5.18

6.5.9 6.5.10

6.5

6.5.1 6.5.2

6.5.3 6.5.4 6.5.5

6.5.6 6.5.7

Establish design
architecture

Produce integrated data
package

Initiate evolutionary
development

Finalize design

Develop models and
Fabricate prototypes

Assess failure modes,
effects, and criticality

Assess testability
needs

Assess design
Capacity to evolve

P

P

P

P

P

P

P

P

P

Model
checking
tool

Output of
counterexamples

Input Input

InvalidValid

Developing
formulae

EF　Q
AG　P

Q

Specification of
an evaluated target

Output of checking results

Workflow

or

“Q” may become valid
“P” is always valid

Properties to be satisfied

Modeling of state
transitions

Model checkingModel
checking
tool

Model
checking
tool

Counterexamples

Fig. 5 Process of Model checking

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−201−Synthesiology - English edition Vol.3 No.3 (2010)

when the counterexamples are analyzed, it means that the
specification of the target based on the models has flaws.

The following two effects can be expected by applying
model checking. First, it may be possible to reduce the
cost of detecting f laws in the specification by using the
counterexamples. If results of test method and simulation
method come out incorrect, it is necessary to analyze the
cause by hypothesizing the many causes which may lead to
incorrectness. Much effort may be necessary to identify the
real cause. By applying model checking, it is possible to trace
the occurrence of incorrectness using the counterexamples
which are output from the model checking tool automatically.
Therefore, it is possible to identify the cause of incorrectness
efficiently. Second, there is a possibility for detecting flaws
in the specification to be verified through modeling, or the
formalization of specification, when model checking is
conducted.

4 Synthesis of methods

Architectural design method and model checking are
synthesized while taking advantage of the characteristics of
each method, to construct the methodology for this research.
In this chapter, the process of synthesizing architectural
design method and model checking is shown by describing
workflows in this methodology.

4.1 Proposed methodology
Figure 6 shows the methodology proposed for this research,
whereby architectural design method and model checking are
synthesized. This methodology is composed of architectural
design method, model checking, and bridge methodTerm23
which connects two methods.

First, a system specification is input to this methodology.
Based on the system specification, architectural designing
including functional and physical designing are done
according to IEEE 1220. By architectural designing,
the system specification is decomposed into component
specif ications and interface specif ications among the
components (dashed-line specifications in upper left in Fig. 6).
A traceability matrixTerm 24 defined in IEEE 1220 is developed
in the process of architectural designing. Figure 7 shows the
traceability matrix. An identification number is assigned
to each specification for the system specification and the
component specifications. The traceability matrix summarizes
the correspondence between the system specification and
component specifications which are broken down from the
system specification.

Next, bridge method developed in this research is applied
to the component specifications, the interface specifications
among components, the traceability matrix, and the system
specification. By applying the bridge method, specifications
related to the cooperative behavior are extracted from the
component specifications and interface specifications among
components (striped specifications in lower left of Fig. 6).
Properties which must be satisfied by the cooperative behavior
are derived. A model checking tool which is applied in the
methodology is selected. Outputs of the bridge method are
necessary inputs for conducting model checking.

Specifications related to the cooperative behavior extracted
from the component specifications and interface specifications

Fig. 6 Methodology in this research Fig. 7 Traceability matrix

Input

Methodology

Inconsistency
of cooperative
behavior

Traceability
matrixComponent

B
specification

Bridge method

Interface
specification
between

components

Component
A

specification

Architectural
designing

System
specification

Component A
specification

for
cooperative
behavior

Component B
specification

for
cooperative
behavior

Interface
specification
between

components for
cooperative behavior

Properties to
be satisfied

Every property is not satisfiedEvery property is satisfied

Consistency is
confirmed for
cooperative behavior

Component
A

specification

Component
B

specification

Interface
specification
between

components
Workflow

Output

Model checking

Model
checking tool

Release

5.3 function ZB

5.2 function YB

5.1 function XB

5.1 function XA
5.2 function YA1
5.3 function YA2

4.3 function Z

4.2 function Y

4.1 function X

4.3 function Z

4.2 function Y

4.1 function X

Traceability matrix for system
specification and

component B specification

Traceability matrix for system
specification and

component A specification

5.1 function XB
5.2 function YB
5.3 function ZB

4.1 function X
4.2 function Y
4.3 function Z

System specification

N/A

5.3 function YA2

5.2 function YA1

5.1 function XA

Component A specificationSystem specification

Component
B

specification

Component
A

specification

System
specification

6

Component B specification

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−202− Synthesiology - English edition Vol.3 No.3 (2010)

among components are modeled according to the expression
form of the model checking tool to be applied. Also, formulae
are developed from the properties which must be satisfied by
the cooperative behavior, based on the expression form of the
model checking tool. The developed models and the formulae
are input to the model checking tool. If counterexamples are
output from the model checking tool, the counterexamples
are analyzed and the inconsistency of the cooperative
behavior is fed back to architectural designing. Based on the
inconsistency of the cooperative behavior which is fed back,
architectural designing is done according to the workflows
of this methodology. If no counterexamples are output from
the model checking tool, the component specifications
and the interface specifications among components whose
cooperative behavior is consistent are released, and they are
output as results of this methodology.

4.2 Bridge method
In the methodology of this research, system verification is
conducted for the cooperative behavior by components in the
system design phase. It is necessary to connect the outputs
of architectural designing to the inputs of model checking
seamlessly. We develop the method to derive the specifications
related to the cooperative behavior, the properties which must
be satisfied by the cooperative behavior, and the model checking
tool to be applied, based on the component specifications, the
interface specifications among components, the traceability
matrix, and the system specification. This is called bridge
method because it serves as the bridge between architectural
design method and model checking. Bridge method is novel
since it focuses on the cooperative behavior to present a specific

means for synthesizing the systems engineering standard such
as IEEE 1220 and model checking. Figure 8 shows the bridge
method for architectural design method and model checking.
Figure 8 corresponds to the details of the bridge method
shown in the central part of Fig. 6. The inputs of the bridge
method include the component specifications, the interface
specifications among components, the traceability matrix, and
the system specification.

First, specifications related to the cooperative behavior are
extracted from the component specifications and interface
specifications among components. Figure 9 shows specifications
related to the cooperative behavior in the component
specifications and interface specifications among components.
The traceability matrix is used when specifications related to
the cooperative behavior by the component specifications are
extracted. If the system specification corresponds to multiple
component specifications in the traceability matrix, a function
of the system is achieved when these components cooperate.
In the case of Fig. 7, the 5.1 function XA of the component
A specification and the 5.1 function XB of the component B
specification cooperate to achieve the 4.1 function X of the
system specification. In Fig. 9, this corresponds to the striped
part of the component A specification and the component B
specification. The specifications related to the cooperative
behavior in interface specifications among components are
extracted based on interface information within the component
specification related to the cooperative behavior. In Fig. 9, this
corresponds to the part of the message in the center.

Next, the proper t ies which must be sat isf ied by the
cooperative behavior of the components are extracted from
the system specification based on the traceability matrix. The
reason is that it is necessary for the cooperative behavior by
the components extracted by the traceability matrix to satisfy
the system specification achieved by the cooperative behavior.
In case of Fig. 7, the cooperative behavior of the 5.1 function
XA of the component A specification and the 5.1 function XB
of the component B specification must satisfy the properties
of the 4.1 function X of the system specification.

Bridge
method

Attributes

Selection of
Model checking

tool

Identification
of attributes

Extraction of
properties
to be satisfied

Extraction of
cooperative
behavior

System
specification

Traceability
matrixComponent

B
specification

Interface
specification
between
components

Component
A

specification

Component
A

specification
for

cooperative
behavior

Component
B

specification
for

cooperative
behavior

Interface
specification
for cooperative
behavior

Properties to
be satisfied

Model
checking tool

Fig. 8 Bridge method for architectural design method
and Model checking Fig. 9 Specifications related to cooperative behavior

Specification related to
cooperative behavior

ProcessingMessage

Component
specification
related to
cooperative
behavior

Component B
specification

Component
A

Component A
specification

Interface specification
related to cooperative

behavior

Component
B

Component
specification
related to
cooperative
behavior

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−203−Synthesiology - English edition Vol.3 No.3 (2010)

The attributes of the cooperative behavior are determined
based on the specifications related to the cooperative behavior
and the properties which must be satisfied by the cooperative
behavior. The attributes of the cooperative behavior can be
categorized as follows:

(1) There must be no lacks and variances in messages which
are sent or recieved among components and processings
related to the messages;

(2) The timing of messages which are sent or recieved
among components and processings related to the
messages are correct.

The model checking tool to be applied is selected according
to the identified attributes. The representative types of
model checking tools are f inite automaton[17] Term 25 and
timed automaton[18] Term 26 which is extended based on finite
automaton. When verifying point (1), the model checking
tool which corresponds to finite automaton is selected.
SPIN[19] Term 27 is one of the representative model checking tools
for finite automaton. When temporal limitations such as the
timing are verified as in point (2), the model checking tool
which corresponds to timed automaton is selected. Timed
automaton is an extension of finite automaton. The model
checking tool based on timed automaton can also verifiy
point (1). UPPAAL[20] Term 28 is one of the representative model
checking tools for timed automaton. Also, each component
in the system behaves in parallel. Therefore, it is necessary
to select the model checking tool which can model parallel
systems. SPIN and UPPAAL can model the parallel systems.

5 Application to industrial case

There is recently a rapid advancement in functions of
industrial robots[21] Term 29. Many industrial robots have a
strong mechanical output due to the nature of their works;
therefore safety of operators must be considered. The
industrial robot is one of the systems which are appropriate
for the application of this methodology. As of writing this
paper, we are developing an industrial robot system for
transporting irregularly shaped rigid-bodies, jointly with a
manufacturer of industrial robots. We select the irregular-
rigid-body-transport robot system as an industrial case study,
and apply our methodology.

Followings are descriptions of the irregular-rigid-body-
t ranspor t robot system and results of applying this
methodology.

5.1 Irregular-rigid-body-transport robot system
The irregular-rigid-body-transport robot system is an
indust r ial robot system which engages in grasping,
transporting, and placing of heavy rigid-bodies with irregular
shapes and sizes. The characteristic of requirements for
the irregular-rigid-body-transport robot system is that the

system must have a strong autonomy in grasping and placing
the irregular rigid-body. Although the area of grasping the
irregular rigid-body is limited, the shape and size of the
rigid-body, the position where the irregular rigid-body is
grasped, and the direction of the irregular rigid-body are
indefinite. The system must accurately determine the shape,
size, and direction of the irregular rigid-body. Also, while the
area in which the irregular rigid-body is placed is limited,
the location in which the irregular rigid-body is placed
within that area is indefinite. The system must accurately
determine the location where other irregular rigid-bodies are
not present, or the location with the lowest height in that area
which is laid with other irregular rigid-bodies.

In developing the irregular-rigid-body-transport robot
system, system requirement analysis is conducted based on
the system needs. The system specification is defined through
system requirement analysis. This methodology is applied
with the defined system specification as an input.

5.2 Application of this methodology
In this section, the specific applications of this methodology
are described for architectural design method, bridge method,
and model checking mentioned in chapter 4.

5.2.1 Architectural design method
Architectural designing is done using the system specification
of the irregular-rigid-body-transport robot system as an input.
By architectural designing, the specification of the irregular-
rigid-body-transport robot system is decomposed into the
specifications of the measurement subsystem, the robot
subsystem, and the integrated control subsystem, as well
as the interface specifications among the subsystemsTerm 30.
Figure 10 shows the results of architectural designing for the
irregular-rigid-body-transport robot system. In architectural
designing, each subsystem is designed by assuming the
subsystem componentsTerm 31 which compose the subsystem
to make the most of COTS (commercial off the shelf)Term 32

products and existing technologies.

The measurement subsystem is composed of a laser scanner
to measure a three-dimensional shape, a vertical motion
mechanism for the laser scanner, and a measurement control
computer which controls them. The measurement subsystem
measures the shape, size, position, and direction of the
irregular rigid-body when grasping it. It also measures the
unevenness of the area where the rigid-body is placed.

The robot subsystem is composed of a robot arm, a robot hand,
and controllers which control each subsystem component. It
also has a teaching pendantTerm 33 for programming actions and
emergency stop of the robot arm. The robot subsystem grasps,
transports, places irregular rigid-bodies.

The integrated control subsystem is composed of an

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−204− Synthesiology - English edition Vol.3 No.3 (2010)

integrated control computer which controls the measurement
and robot subsystems and a consoleTerm 34 to input work
instructions and to check system status. The integrated
control subsystem controls the robot subsystem based on the
results of measurements by the measurement subsystem.

Also, the t raceability matr ixes for the measurement,
robot, and integrated control subsystems are developed for
architectural designing.

5.2.2 Bridge method
Bridge method is applied to the subsystem specifications,
the interface specifications among the subsystems, the
traceability matrix, and the system specification for the
irregular-rigid-body-transport robot system. Here, we discuss
the measurement and integrated control subsystems to
describe the specific application of the bridge method.

First, the specifications related to the cooperative behavior are
extracted from the subsystem specifications and the interface
specification between subsystems based on the traceability
matrix. The specific extraction of the specifications related
to the cooperative behavior follows the means described in
subchapter 4.2. For the measurement subsystem specification,
six items are extracted from 39 specification items, and for
the integrated control subsystem, six items are extracted
from 78 specification items. For the interface specification
between the measurement and integrated control subsystems,
22 items are extracted from 26 specification items.

Next, the proper t ies which must be sat isf ied by the
cooperative behavior of the subsystems are extracted based
on the traceability matrix and the system specification of the
irregular-rigid-body-transport robot system. The specific
extraction of the properties which must be satisfied by
the cooperative behavior follows the means described in
subchapter 4.2. For the measurement and integrated control
subsystems, 23 items are extracted as the properties which
must be satisfied by the cooperative behavior. Table 1 shows
two items from the 23 properties extracted.

The attributes of the cooperative behavior are determined
based on the extracted specifications related to the cooperative
behavior and the properties which must be satisfied by the
cooperative behavior. In the cooperative behavior of the
measurement and integrated control subsystems, the lacks
and variances of the messages which are sent or received
between subsystems and processings related to the messages
are suspected. There are specifications for the timing of the
messages which are sent or received between subsystems and
processings related to the messages as well as the temporal
limitation within 100 ms. Therefore, the two attributes, (1)
and (2), as shown in subchapter 4.2, are determined.

Also the model checking tool to be applied is selected based
on the identified attributes. For the cooperative behavior by
the measurement and integrated control subsystems, it is
necessary to verify the temporal limitation and the timing of
messages which are sent or received between subsystems and
processing related to the messages. Since the measurement
and integrated control subsystems behave in parallel, it is
necessary to select the model checking tool which can deal
with the parallel systems. Therefore, UPPAAL is selected as
the model checking tool which satisfies these requirements.

5.2.3 Model checking
As in the previous section, the measurement and integrated
control subsystems are discussed in this section to describe
the specific application of model checking.

First, the specifications related to the cooperative behavior
extracted by the bridge method are modeled according to
the expression form of the model checking tool. Figures 11
to 13 show the results of modeling the specifications for the
cooperative behavior by the measurement and integrated
control subsystems using UPPAAL. The developed model
is composed of three models for the specifications related
to cooperative behavior: the model corresponding to the
measurement subsystem (Fig. 11); the model corresponding
to the integrated control subsystem (Fig. 12); and the model
corresponding to the interface between the measurement and
integrated control subsystems (Fig. 13).

Next, the formulae for model checking are developed based

9

Irregular-rigid-body-transport
robot system Integrated control

subsystem

Console

Vertical movement
mechanism for
laser scanner

Robot
subsystem

Measurement
subsystem

Measurement
control computer

Laser
scanner Robot hand

Controller

Teaching
pendant Robot arm

Controller

Integrated
control computer

InterfaceSubsystem
component

SubsystemSystem

Fig. 10 Results of architectural designing for the
irregular rigid-body transport robot system

Table 1 Properties to be satisfied for the cooperative
behavior by the measurement and integrated control
subsystems (2 out of 23 items)

The measurement subsystem must stop the measurement
processing within 100 ms after the measurement stop
request is transmitted by the integrated control subsystem.

3－3

The integrated control subsystem must receive the
result of rigid-body measurement or the failure response
of rigid-body measurement from the measurement
subsystem, when the rigid-body measurement request
is sent to the measurement subsystem.

1－5

PropertyNo.

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−205−Synthesiology - English edition Vol.3 No.3 (2010)

on the properties which must be satisfied by the cooperative
behavior. For the measurement and integrated control
subsystems, the formulae for 23 cases are developed based
on the properties which must be satisfied by the cooperative
behavior according to UPPAAL expression form. Table 2
shows the formulae corresponding to the two items shown in
Table 1.

Model checking is conducted based on the developed models
and the formulae. For the measurement and integrated
control subsystems, model checking using UPPAAL is
conducted based on the cooperative behavior models shown
in Figs. 11 to 13 and the formulae for the 23 cases including
the two cases shown in Table 2. The results of model
checking are analyzed. For the measurement and integrated
control subsystems, the results show that the models do not
satisfy some formulae. When the counterexamples output
by UPPAAL are analyzed, six cases of inconsistency of the
cooperative behavior are detected including the results of
the formulae shown in Table 2. Table 3 shows the results of
model checking corresponding to the two cases in Table 2.

Inconsistency of the cooperative behavior is fed back to
architectural designing. For the measurement and integrated
control subsystems, architectural designing is done again,
based on the six cases of inconsistent cooperative behavior

including the results of Table 3. As a result of re-architectural
designing, the measurement subsystem specification, the
integrated control subsystem specification, and the interface
specification between the measurement and integrated
control subsystems whose inconsistency of the cooperative
behavior is corrected, are developed.

5.3 Application results
The methodology in th is research is appl ied to the
system specification of the irregular-rigid-body-transport
robot system. As a result, the measurement subsystem
specification, the integrated control subsystem specification,
the robot subsystem specif icat ion and the inter face
specifications among the subsystems are derived from the
system specification of the irregular-rigid-body-transport
robot system. It is also possible to detect inconsistency of
the cooperative behavior, as shown in Table 3, from the
measurement and integrated control subsystems before
fixing these specifications. Later, it is possible to develop
the subsystem specifications and interface specifications
between subsystems whose cooperat ive behavior is
consistent. We are able to apply this methodology to the

Fig. 11 Cooperative behavior model for the measurement subsystem

Table 2 Formulae of the cooperative behavior for the
measurement and integrated control subsystems (2 out
of 23 cases)

A[] P_BING_SCAN.BING_SCAN_REQ_STOP
imply (bing_stopreq_time <= 10)3－3

A[] (bing_syscont_sendreq == bing_req_rod)
imply (bing_syscont_req == bing_req_rod)1－5

FormulaNo.

Table 3 Model checking results of the cooperative
behavior for the measurement and integrated control
subsystems (2 out of 6 cases)

The measurement processing may not stop within
100 ms from receiving the measurement stop request.
Also, the measurement subsystem itself may stop by
receiving the measurement stop request.

3－3

Depending on the messages which are sent or recieved
between subsystems, or the timing of processings
related to the messages, the response for rigid-body
measurement request/the measurement request for
placement area/the measurement stop request issued
before n-th time may be returned to the rigid-body
measurement request issued on the n-th time.

1－5

Model checking resultNo.

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−206− Synthesiology - English edition Vol.3 No.3 (2010)

actual product development of this industrial robot, and
contribute in increasing the reliability of it. It is reconfirmed
that this research corresponds to Type 2 Basic Research.
As of writing this paper, the irregular-rigid-body-transport
robot system is being developed based on the specifications
whose cooperative behavior is consistent to meet the needs of
industry.

6 Discussion

In this chapter, the effectiveness of this methodology is
demonstrated. Issues of this methodology are also described.

6.1 Effectiveness of this methodology
The effectiveness of the methodology in this research is
discussed based on the application results to the industrial
case shown in chapter 5. In demonstrating the effectiveness,
we focus on the QCD (quality, cost and delivery)Term 35 of the
case study.

First, this methodology is considered from the perspective
of the quality of a development target. The methodology is
applied to the functionally complex industrial case of the
irregular-rigid-body-transport robot system. As a result,
it is possible to develop the measurement and integrated
control subsystems specif ications whose cooperative
behavior is consistent by feeding back inconsistency of the
cooperative behavior by the measurement and integrated

control subsystems to architectural designing in one cycle.
Particularly, inconsistencies of the cooperative behavior
shown in Table 3 are flaws which are difficult to detect by
human beings only, but it is possible to detect them because
of model checking where the validity of the properties
to be satisfied is verified exhaustively. The fact that such
flaws are detected in the early phase of system development
demonstrates the effectiveness of this methodology.

Next, this methodology is considered from the perspective
of the development cost and delivery time. Table 4 shows the
man-hours for applying this methodology to the industrial
case. For bridge method and model checking, the values
for the measurement and integrated control subsystems
described in chapter 5 are shown. For architectural designing,
189 man-hours are required. For system development,
there are many previous researches on the effectiveness of
applying systems engineering method including architectural
designing[22]-[25]. In the previous researches, it was shown
that it was possible to shorten the cost and delivery time

Table 4 Man-hours required to apply the methodology
to industrial case

12※Model checking

5※Bridge method

189Architectural designing

Man-hourWork

※Values in the measurement and integrated control subsystems

Fig. 12 Cooperative behavior model for the integrated control subsystem

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−207−Synthesiology - English edition Vol.3 No.3 (2010)

of the system development by appropriately applying the
systems engineering methods. In this paper, it is not possible
to present the degree of reducing the cost and delivery time
by the application of architectural design method in the
industrial case. However, considering the fact that certain
results are obtained for architectural designing, there is
a high possibility that the cost and delivery time can be
reduced for the system development. For bridge method
and model checking, as shown in Table 4, 5 man-hours and
12 man-hours are required for the measurement subsystem
and the integrated control subsystem, respectively. Here,
we discuss inconsistency of the cooperative behavior
detected by conducting model checking through the bridge
method. Inconsistency of the cooperative behavior between
subsystems can generally be detected in the system test
where the subsystems are combined, conducted at the
final phase of system development. If inconsistency of the
cooperative behavior among subsystems is detected in the
system test, large amount of cost and time are required for
correcting. Boehm, in Reference[26], analyzed that if the
cost of detecting and correcting the requirement flaws at the
phase of defining requirement specifications were set as 1,
the cost would be 2 in a small-scale system if the requirement
f laws were detected in the test, and the cost would be 20
in a large-scale system. Inconsistencies of the cooperative
behavior shown in Table 3 are flaws which are highly likely
to be missed unless model checking is applied in the phase
when the required specifications are defined. Considering
the whole system development, the man-hours required for
bridge method and model checking are highly cost-effective.

6.2 Applicability of this methodology
The methodology in this research is not specialized to the
development of particular technological systems, but it can be
applied universally to the development of any technological
system. The reason is that in designing a system, achieving
a function of the system by finding components which
compose the system based on the system specification and
having the components cooperate is a common concept for
all technological systems. Also, this methodology can deal

with unique problems related to the cooperative behavior
in an applicable system. The reason is that it has the bridge
method where attributes and model checking tools are
selected according to the characteristics of the cooperative
behavior.

However, attentions must be paid in the application of this
methodology. This methodology employs model checking to
verify whether the cooperative behavior by the components
is consistent. Model checking is a method to verify whether
given properties are valid or invalid in all possible state
transitions which can be achieved by the models using a
computer exhaustively. In cases where there are numerous
states of the models in model checking, state explosion may
occur where model checking does not get completed since
the number of state combinations is too large. This means
there is a possibility that the verification of the cooperative
behavior by model checking may not get completed when the
cooperative behavior by the components becomes extremely
complex as a result of architectural designing. In this case, it
is necessary to conduct re-architectural designing to prevent
the cooperative behavior by the components from getting
extremely complex, or reduce the number of the states in
the models for the specifications related to the cooperative
behavior.

6.3 Issues
We are able to comfirm the effectiveness of this methodology
on an industrial case study. However, there are some issues
which must be solved in the future.

The first issue is a problem of the bridge method in this
methodology. In bridge method, the properties which must
be satisfied by the cooperative behavior are extracted. In
general, the properties to be satisfied by a target of model
checking are liveness and safety[27]. Liveness is a property
where “the verif ication target will eventually reach a
desirable state”. Safety is a property where “the verification
target will never reach an undesirable state”. The liveness
property is often the specifications which must be achieved

Fig. 13 Cooperative behavior model for interface specification between
the measurement and integrated control subsystems

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−208− Synthesiology - English edition Vol.3 No.3 (2010)

by the verification target. Therefore, the liveness of the
verification target can be extracted from the specifications
of the verification target or the specifications based on the
verification target. However, most of the property related
to safety of the verification target is not defined in the
specifications of the verification target or the specifications
based on the verification target. Extracting safety of the
verification target depends highly on the experience and
skill of engineers who use this methodology. Particularly,
extracting the safety property which must be satisfied by the
cooperative behavior tends to be dependent on engineers due
to the complexity of the cooperative behavior.

The second issue is a problem of model checking in this
methodology. In model checking, the models are developed
based on the specif ications related to the cooperative
behavior extracted from the component specifications and
interface specifications among components. The component
specifications and the interface specifications are often
described in natural language. Therefore, in many cases,
the extracted specifications are modeled manually and
errors may creep into the models. This is an issue for model
checking in general.

The third issue is also a problem of model checking in this
methodology. In model checking, the fomulae are developed
based on the properties which must be satisfied by the
cooperative behavior according to the expression form of the
model checking tool. The formulae of the model checking are
expressed by temporal operatorTerm 37 (G: globally, F: finally)
called temporal logicTerm 36, path quantifierTerm 38 (A: all, E:
exists), and logic operatorTerm 39 (OR, AND, NOT). However,
since specialized knowledge is needed to use temporal logic,
it is difficult to develop the formulae based on the properties
to be satisfied by the cooperative behavior. This is also an
issue for model checking in general.

7 Summary and future work

In this paper, we present the methodology where the
system specification is decomposed into the component
specif ications and the interface specif ications among
components for the consistent cooperative behavior among
the components which compose the system. Bridge method
is developed to synthesize architectural design method and
model checking, and the actual example of the bridge method
is presented. The results of applying this methodology to
an industrial robot are shown. From the application results,
it is demonstrated that this methodology is effective for
the complex system used in industry. We plan to present
this methodology to the industrial f ields through the
Graduate School of System Design and Management, Keio
University[28] (Keio SDM) to which the authors belong. The
Keio SDM is a graduate school where people of various
fields of both humanities and sciences study. Engineers

who work in the frontline of product development on
systems of aerospace, information, robot, and electronics
attend Keio SDM. By presenting this methodology to the
engineers attending Keio SDM, we can make contribution to
industry. However, there are rooms for improvements in this
methodology. In the future, we will solve issue 1 which is
listed in this paper. We will aim to develop a methodology of
higher quality.

System: a combination of interacting elements
organized to achieve one or more stated purposes.
Electronic equipment system: a system equipped
with multiple processors which digitally process
information (e.g. cellular phone).
In for mat ion system: a system for business
activities where multiple computers engaging in
data processing are connected with a network (e.g.
business system).
System of systems: a composite system which is
formed by multiple systems with different purposes.
Coope ra t ive behav ior : a coope ra t ion w it h
processings of the system component and the other
system components through the interface among
components.
Consistency of cooperative behavior: a consistent
implementation of the cooperative behavior by
the components in correspondence to the system
specification.
Systems engineering: technological methodologies
to achieve systems which satisfy the required
quality within a given budget and time period. It is
standardized as know-hows and rules independent
of the technological fields.
Architectural design method: a design method to
allocate functions and performances required of a
system to the system components, and to define the
specifications of the components and the interface
among the components.
Model checking: a verification method to verify
whether a given property is valid or invalid in all
possible state transitions which can be achieved by
the models which represent the state transitions of
the system, using a computer exhaustively.
Formal method: a developing and verif ication
technology where specifications are expressed using
the language of mathematical logic to guarantee the
correctness of the specification.
IEC 61508: an internat ional standard which
determines compliance items needed to build the
functional safety in the process industry, machine
manufacturing, traff ic transportation, medical
device, and others, using electrical, electronic, and
programmable electronic systems.

Term 1.

Term 2.

Term 3.

Term 4.

Term 5.

Term 6.

Term 7.

Term 8.

Term 9.

Term 10.

Term 11.

Terminologies

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−209−Synthesiology - English edition Vol.3 No.3 (2010)

Term 12.

Term 13.

Term 14.

Term 15.

Term 16.

Term 17.

Term 18.

Term 19.

Term 20.

Term 21.

Term 22.

Term 23.

Term 24.

Term 25.

Term 26.

Structured analysis and structured design (SA/
SD) method: a design method where a system is
decomposed into components by focusing on data
flows of the system.
ISO 15288: one of the systems engineer ing
standards. The tasks and procedures are defined for
each process of the entire system lifecycle from the
conceptualizing phase to the dismantling phase.
ANSI/EIA 632: one of the systems engineering
standards. The tasks and procedures are defined
for each process of the system lifecycle from the
conceptualizing phase to the transition to operation
phase.
IEEE 1220: one of the systems engineer ing
standards. The tasks and procedures are defined for
each process of the system lifecycle from the system
requirement analysis phase to the system test phase.
Test method: a verification method for verifying
behavior of actual products against the test cases.
Simulation method: a verification method where a
target to be verified and peripheral environment of
the target are simulated as models on a computer,
and behavior of the models is verified against the
test cases.
Deadlock: a state where two or more processing
un it s wait for each other to complete each
processing, and as a result, all processings fail to
move on further.
Functional designing: a work where functions
defined as a system specification are decomposed
and refined, and performances defined as the system
specification are allocated to the decomposed and
refined functions.
Phys ica l de s ig n i ng: a work whe re sys t e m
components are specified, and the functions and
performances decomposed and refined in functional
designing are allocated to the components.
Functional analysis: the process which corresponds
to functional designing, defined in chapter 6 section
3 in IEEE1220.
Synthesis: the process which cor responds to
physical designing, defined in chapter 6 section 5 in
IEEE1220.
Bridge method: a method which is presented in this
paper to connect architectural design method and
model checking seamlessly.
Traceability matrix: a table which summarizes
the cor respondence of upper and lower level
specifications.
Finite automaton: a behavior model composed
of f inite number of combinations of the state,
transition, and operation.
Timed automaton: a behavior model where temporal
variables are incorporated into finite automaton. It
allows modeling of the time passage as transition

conditions.
SPIN: a model checking tool based on f inite
automaton. State transitions of the system are
modeled using PROMELA (process meta language)
which is a language similar to C. It can be
downloaded from <http://spinroot.com/>.
UPPAAL: a model checking tool based on timed
automaton. State transitions of the system can
be modeled in an intuitive manner using GUI
(graphical user interface). It can be downloaded
from <http://www.uppaal.com/>.
Industrial robot: an industrial-use machine with
the auto-control functions for manipulation or
transportation. It can be programmed to conduct
various work routines.
Subsystem: an entity possessing the structure of a
distinct, local system, while being part of a system.
Subsystem Component: an element or a part which
composes the subsystem.
COTS (commercial off the shelf): software and
hardware products which are available on the
market.
Teaching pendant: a device used for programming
acitons and emergency stop of an industrial robot.
Console: an input and output device used for
operating the system. It is composed of input device
such as a keyboard and output device such as a
monitor display.
QCD: an abbreviation for quality, cost, and delivery
of development.
Temporal logic: a theory of rules and expressions to
understand and express the problem in relation to
time. Temporal operator, path quantifier, and logic
operator are combined to express the properties such
as “P is always valid” or “Q is eventually valid.”
Temporal operator: operators to express “G:
globally” and “F: finally” in temporal logic.
Path quantifier: operators to express “A: all” or “E:
exists” in temporal logic.
Logic operator: symbols which express logic
operation. It includes “NOT: negation”, “AND:
logical product” and “OR: logical sum.”

Term 27.

Term 28.

Term 29.

Term 30.

Term 31.

Term 32.

Term 33.

Term 34.

Term 35.

Term 36.

Term 37.

Term 38.

Term 39.

International council on systems engineering (INCOSE):
INCOSE Systems Engineering Handbook version 3.1, 1.5 of 6,
INCOSE, USA (2007).
N. G. Leveson: SAFEWARE: System Safety and Computers,
515-553, Addison-Wesley Professional, USA (1995).
H. Shimizu: Arian 5 no bakuhatsu jiko to sofuto uea
anzensei ni kansuru kokusai kikaku (Explosion of Ariane
5 and the international standard for software safety),
Anzen Kogaku (Journal of the Japan Society for Safety
Engineering), 41 (1), 39-42 (2002) (in Japanese).
Ministry of Land, Infrastructure, Transport and Tourism:
FDP shisutemu no shogai no gen’in chosei no kekka (Result

[1]

[2]

[3]

[4]

References

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−210− Synthesiology - English edition Vol.3 No.3 (2010)

Authors

Atsushi Katoh
Completed the courses in Electric System
at the Graduate School of Science and
Technology, Kumamoto University
in 2000. Joined an electric appliance
company and engaged in research and
development of a small network device
in a ubiquitous environment. Worked on
independent verification and validation
(IV&V) of spacecraft software in space
development field since 2006. Also engaged in research on
systems engineering at Keio SDM. Won the Research Award
of the Information Processing Society of Japan in 2009.
Member of the Information Processing Society of Japan. In
this paper, was in charge of the research plan, selection and
synthesis of the methods, application to the industrial case,
and discussion.

Masataka Urago
Completed the doctoral program at the
Depar tment of Mechanical Sciences
and Engineer ing, Graduate School
o f E n g i n e e r i n g , To k yo I n s t i t u t e
o f Te c h n o l o g y i n 19 9 8 . D o c t o r
(Engineering). Became an assistant at
the Tokyo Institute of Technology in
1998. Appointed to associate professor of
Keio SDM in 2008. Engages in research
on systems engineering as well as computer modeling and
mathematical computation of engineering problems. Member
of the Japan Society of Mechanical Engineers and the
International Council on Systems Engineering (INCOSE). In
this paper, was in charge of the selection and synthesis of the
methods.

Yoshiaki Ohkami
Completed the doctoral program at the
Department of Electrical Engineering,
Graduate School of Engineering, Tokyo
Institute of Technology in 1968. Doctor
(Engineering). NASA Fellow, professor
of the Tokyo Institute of Technology,
professor of Keio Un ive r si t y, and
Research Director, Japan Aerospace
Exploration Agency (JAXA). Became
the Director of Keio SDM in 2008. Engages in research
on dynamics and control of complex systems and strategic
systems engineering. Fellow of the Japan Society of
Mechanical Engineers and the International Council on
Systems Engineering (INCOSE). Member of the Japan

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

of the cause adjustment of FDP system failure), MLIT
(online), http://www.mlit.go.jp/kisha/kisha03/12/120312_.
html (2009-09-22) (in Japanese).
A. Katoh, N. Kohtake, S. Haruyama and Y. Ohkami: Moderu
kensa o mochiite kumikomi shisutemu ni okeru sofuto uea to
hado uea no kyocho dosa ni kansuru yokyu shiyo no fuseigo
o kenshutsu suru shuho (A Model Checking Methodology
for Detecting Inconsistency of Specifications concerned
with Cooperating Behavior between Software and Hardware
in Embedded System), IPSJ Symposium Series, 2009, 65-70
(2009) (in Japanese).
A. Katoh and Y. Ohkami: FPGA to sofuto uea ni okeru
kyocho dosa no seigosei ni kansuru hyoka shuho no teian
(An Approach for Verifying Correctness of Co-operations
between FPGA and Software in Electronic System), IPSJ
SIG Notes, 2009 (31), 105-112 (2009) (in Japanese).
E. M. Clarke, O. Grumberg and D. E. Long: Model checking
and abstraction, ACM Transactions on Programming
Languages and Systems, 16 (5), 1512-1542 (1994).
Institute of Electrical and Electronics Engineers (IEEE):
IEEE standard for system and software engineering - System
life cycle processes, IEEE 15288-2008 (2008).
American National Standard Institute (ANSI)/ Electronic
Industries Alliance (EIA): ANSI/EIA Standard for Process
for Engineering a System, ANSI/ EIA 632-1999 (1999).
Institute of Electrical and Electronics Engineers (IEEE):
IEEE standard for application and management of the
systems engineering process, IEEE 1220-2005 (2005).
E. M. Clarke and J. M. Wing: Formal methods: State of the
art and future directions, ACM Computing Surveys, 28 (4),
626-643 (1996).
International Electrotechnical Commission (IEC): IEC
standard for functional safety of electrical/electronic/
programmable electronic safety-related systems, IEC 61508-
SER Ed. 1.0 (2005).
T. DeMarco: Structured Analysis and System Specification,
Yourdon Press, USA (1978).
M. Arisawa and T. Saitoh: Moderu Shimyureshon Giho
(Model Simulation Methodology), 16-17, Kyoritsu Shuppan
(1997) (in Japanese).
V. K. Rompaey, D. Verkest, I. Bolsens and D. H. Man:
CoWare – A design environment for heterogeneous
hardware/software systems, Proceedings of the European
Design Automation Conference, 252-257 (1996).
T. Doran: IEEE 1220: For practical systems engineering,
IEEE Magazines Computer, 39 (5), 92-94 (2006).
M. Sipser: Course Technology Ptr (SD), Introduction to the
Theory of Computation, 29-90, The Netherlands (1996).
R. Alur and D. L. Dill: A theory of timed automata,
Theoretical Computer Science, 126 (2), 183-235 (1994).
G. J. Holzmann: The model checker SPIN, IEEE Transaction
on Software Engineering, 23 (5), 279-295 (1997).
K. G. Larsen, P. Pettersson and W. Yi: UPPAAL in a
nutshell, International Journal on Software Tools for
Technology Transfer, 1 (1-2), 134-152 (1997).
Japanese Industrial Standards Committee: Sangyo yo
manipyuretingu robotto - yogo (Industiral Manipulating
Robot – Terminology), JIS B0134 (2008) (in Japanese).
J. P. Elm: A study of systems engineering effectiveness –
Initial results, Proceedings of the Systems Conference 2008
2nd Annual IEEE, 1-7 (2008).
B. Boehm, R. Valerdi and E. Honour: The ROI of systems
engineering: Some quantitative results for software-intensive
systems, Systems Engineering, 11 (3), 221-234 (2008).
E. C. Honour: Understanding the value of systems
engineering, Proceedings of the INCOSE International

[25]

[26]

[27]

[28]

Symposium, 1-16 (2004).
A. K. Kludze: The impact of systems engineering on
complex systems, Proceedings of Conference on Systems
Engineering Research (2004).
B. W. Boehm: Software Engineering Economics, 38-40,
Prentice-Hall, USA (1981).
B. Alper n and F. B. Schneider: Def in ing l iveness,
Information Processing Letters, 21, 181-185 (1985).
Graduate School of System Design and Management, Keio
University: Homepage, Graduate School of System Design
and Management, Keio University (online), http:// www.
sdm.keio.ac.jp/ (see 2010-04-18).

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−211−Synthesiology - English edition Vol.3 No.3 (2010)

Society for Aerospace and Space Sciences, Institute of
Electrical and Electronics Engineers, Inc. (IEEE), and
American Institute of Aeronautics and Astronautics (AIAA).
In this paper, was in charge of research strategy planning and
research integration.

Discussions with Reviewers

1 Novelty of the issue and outcomes
Question (Kanji Ueda, AIST)

In chapter 2, you say the reason for synthesizing the methods
of different research or technological fields is that you can expect
to produce a new research or technological field as some new
technologies are generated from the synthesis. What kind of
results did you obtain from this research?
Comment (Motoyuki Akamatsu, Human Technology Research
Institute, AIST)

This paper claims novelty, but the readers outside of this
specialty cannot understand immediately whether it is novel. I
assume that there had been methods proposed to improve the
reliability of the system, and I think you can emphasize the
novelty if you explain the situation before this research was
carried out. Similarly, I think you should explain why such
critical technology was never pursued before, and why it had been
difficult.
Answer (Atsushi Katoh)

I would like to explain the background of this research by
focusing on the cooperative behavior by the system components.
Normally, the cooperative behavior by the system components is
verified in the system test that is conducted at the final phase of
system development. When any inconsistency of the cooperative
behavior is detected there, it is necessary to return to the upstream
of the system development for correcting, and correction is often
quite costly. Also, re-designing in the final phase may compromise
the reliability of the system. Therefore, the cooperative behavior
by system components must be designed and verified thoroughly
in the upstream of the system development. At that point, there
was no proposal for a methodology to achieve this. The reason
is that the cooperative behavior by system components was
not viewed from the perspective of system reliability, and the
incorporation of system quality in the upstream of the system
development was a relatively new concept. I shall add these points
in chapter 1.

As results of conducting this research, the following four
outcomes were obtained. First is the establishment of this
methodology where the system specifications are decomposed
into the component specifications and interface specifications
among components for consistent cooperative behavior. Second
is the clarification that bridge method is needed to synthesize
architectural design method and model checking, and the
presentation of an actual example for the bridge method for the
cooperative behavior. Third is the expansion of the ranges of
application and research of model checking, by applying the
method that was mainly used in software development to system
development. Fourth is the proposal of this methodology to the
robot industry.

2 Cooperative behavior
Comment (Kanji Ueda)

You use the expressions “cooperative behavior by the
components” several times, but I think the general readers
may have difficulty understanding the meaning. Also, you use
“consistency/inconsistency of the cooperative behavior” as self-
explanatory terms. Please state the definition or the meaning of
the cooperative behavior, and provide explanations.

Comment (Motoyuki Akamatsu)
You do not describe the means for determining the attributes

of the cooperative behavior, extracting the properties to be
satisfied by cooperative behavior, and for considering safety.
Therefore, I don’t think the robot engineers, for example, can see
whether they can use this. I think you should provide explanations
that give some hints for the people of the robot industry to use this
methodology.
Answer (Atsushi Katoh)

In this paper, the cooperative behavior by components
is defined as “a cooperation with processings of the system
component and the other system components through the interface
among components”. The consistency of cooperative behavior
is defined as the state where “a consistent implementation of
the cooperative behavior by the components in correspondence
to the system specification is conducted”. The inconsistency of
cooperative behavior is defined as the state where “the definition
of the consistency of the cooperative behavior is not satisfied”.
These are added to chapter 1.

The attributes of the cooperative behavior are determined
based on the properties to be satisfied by the cooperative behavior
and the specifications related to the cooperative behavior. For
the measurement and integrated control subsystems in the
applied case, we were concerned about the lacks in the messages
and processings of the specifications related to the cooperative
behavior. Also, there were temporal limitation specifications such
as within 100 ms and timing of messages and processings, among
the properties to be satisfied by the cooperative behavior and the
specifications related to the cooperative behavior. Therefore, the
two points presented in subchapter 4.2 were determined as the
attributes. We will add these to section 5.2.2.

The properties that must be satisfied by the cooperative
behavior are extracted using the t raceability matr ix that
summalizes the correspondence between the system specifications
and the component specifications obtained by decomposing the
system specifications.

Confirming safety of the cooperative behavior is the topic
of this research. Safety means a property where the system will
never reach an undesirable state. Since it is difficult to identify
“all the states where the system is undesirable”, it cannot be
denied that there may be a fault in the safety confirmation for the
cooperative behavior. We plan to investigate the solution to this
issue by combining a safety analysis method such as fault tree
analysis (FTA) with this methodology.

3 Selection of methods
Question (Kanji Ueda)

There are many expressions of “according to IEEE 1220…”.
What is its relationship to the methodology developed in this
research? Also, the reason why you employed IEEE 1220 is not
clear.
Comment (Motoyuki Akamatsu)

Please explain what other methods there were of system
design methods other than architectural designing. Please also
explain methods other than IEEE 1220 that you did not employ for
architectural designing. Also, to clarify the scenario for selecting
IEEE 1220 among several other architectural design methods, it
will be easier to understand if you describe what disadvantages
there were in the other methods.

It is explained in chapter 1 that model checking is a method to
exhaustively verify the models that express the state transitions of
the system. Please explain whether model checking method used
here was originally developed in this research or is an application
of an existing method.

It is written that the checking tool based on finite automaton
was selected as the model checking tool, and you describe the

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−212− Synthesiology - English edition Vol.3 No.3 (2010)

advantages. Please describe what other tools there were and what
their disadvantages were. Similarly, if there were other candidates
in the selection of UPPAAL, please describe them.
Answer (Atsushi Katoh)

In this research, we employed the research policy of selecting
the methods for which the effectiveness has been already
established, to efficiently establish a high-quality methodology.
In constructing this methodology, we applied architectural
design method that has been recognized as being effective
and is standardized. Other system design methods include
structured analysis and structured design (SA/SD) method.
While architectural deign method is not appropriate for system
design focusing on specific technological elements such as
data or service, it is a universal design method independent of
any particular technological systems. Therefore, we selected
architectural design method as our system design method. The
representative system engineering standards for architectural
design method include ISO 15288, ANSI/EIA 632, and IEEE
1220. Since the tasks and procedures are finely defined for each
process in IEEE 1220, we employed IEEE 1220. These standards
are compared in chapter 3.

Model checking is a method that has already been established
as a verification method. The research was started in the early
1980s, and today, it is widely used in software development.
Model checking is “a verification using models”, but it has
become a proper noun for the verification method. We will add
these points to chapter 1. The system verification methods other
than model checking include test method and simulation method.
However, model checking can exhaustively verify whether the
properties to be satisfied for the state transitions are valid or
not. Therefore, we employed model checking as our system
verification method. We will compare these in chapter 3.

There is a verification method called theorem proving in the
formal method. Theorem proving is a method where the system
specifications and designs are described in a language that is
mathematically defined in terms of semantics, and are given exact
proof. While theorem proving enables exact verification of a
system, great efforts are needed because some parts must be done
interactively with humans. The authors think that theorem proving
is not a verification method that has been applied in industry
and the effectiveness has not been demonstrated. Therefore, we
excluded it from the candidates of verification methods of this
research.

The representative types of model checking include finite
automaton and timed automaton, which is an extended finite
automaton. Model checking and the tools to be applied must be
selected according to the characteristic of the verified target. In
a case of verifying general state transitions where the situation
change is triggered by some external event, we select a model
checking tool corresponding to finite automaton. SPIN is a
representative model checking tool. In a case of verifying state
transitions including temporal limitations, we select a model
checking tool that corresponds to timed automaton. UPPAAL is
another representative model checking tool. If the target that can
be verified by model checking for finite automaton, it can also
be verified using a model checking tool for timed automaton.
However, it does not work the other way around. We will add
these points to chapter 4. In the applied case, it was necessary to
verify the temporal limitations of the cooperative behavior. Also,
for the model checking tool corresponding to timed automaton,
the authors determined that only UPPAAL possesses the
applicable quality in the industrial case.

4 Industrial application of the outcomes
Comment (Kanji Ueda)

I think the significance as Type 2 Basic Research will increase

if you address how the result of this research was actually used
in the industrial application, what is the prospect, and the limit of
application if it is used.
Comment (Motoyuki Akamatsu)

The important point of this research is that this methodology
must be used by the people in industry who actually work
to develop the system. In that sense, I would like to see an
explanation on what targets these outcomes can be used, and the
range of its application. Also, please state your thoughts on the
ways of diffusing this methodology.
Answer (Atsushi Katoh)

I think the methodology in this research can be applied to the
development of any technological systems, without specializing in
particular technological systems. The reason is that when a system
is designed, the function is achieved by finding the components
that compose the system based on the system specifications,
and then have the components behave cooperatively, and this
is a common concept for all technological systems. Also, this
methodology can deal with the unique issues of cooperative
behavior in the appl ied system. The reason is that th is
methodology has the bridge method where the attributes and the
model checking tool are selected according to the characteristics
of the cooperative behavior.

Currently, the authors are planning and developing a new
product for the industrial robot jointly with an industrial robot
company. The industrial case study in chapter 5 describes these
efforts. As of writing of this paper, the industrial robot is being
developed according to the specifications that were verified for
consistent cooperative behavior by applying the methodology
of this research. I think this research amounts to Type 2 Basic
Research because of the contribution to increase the reliability of
industrial robot. These points are added to chapter 5.

However, cautions must be taken when applying this
methodology. This method employs model checking to verifiy
consistency of the cooperative behavior by components. When
there are numerous states in model checking, state explosion
may occur where model checking cannot be completed due to
the huge number of combinations of the states. This means that
if the cooperative behavior by components becomes extremely
complex due to architectural designing, the verification of the
cooperative behavior may not get completed in model checking.
In such cases, it is necessary to do re-architectural designing to
ensure the cooperative behavior by components will not become
extremely complex, or the number of the states in the models
for the specifications related to the cooperative behavior must
be reduced. We will describe these in the newly added section
“Applicability of this methodology” in chapter 6.

This methodology will be spread throughout industry by Keio
SDM to which the authors belong. We will add this to chapter 7.

5 Advantages and disadvantages of the selected
methods
Question (Motoyuki Akamatsu)

In chapter 3, you describe the selection of the methods. You
mention architectural design and SA/SD methods for achieving
function “a”, and state that you selected architectural design
method because it is a universal design method, although it is
not suitable for system design focusing on specific technological
elements such as data or service. Since the elemental technologies
are selected according to the research goal, can you clearly
state the goal, and then explain that you selected architectural
design method as a result of comparing the advantages and
disadvantages?

The goal of this research, I assume, is to construct a universal
methodology, but when universality is set as a goal, you will
also have a problem that the methodology cannot be applied to

Research paper : A methodology for improving reliability of complex systems (A. Katoh et al.)

−213−Synthesiology - English edition Vol.3 No.3 (2010)

individual problems. I think the solution to this is the bridge
method, but if this is so, please explain this clearly (this is also
relevant to discussion 3).
Answer (Atsushi Katoh)

I shall clarify the objective (goal) of the research. The
objective of this research is to establish a methodology for
decomposing a system specification into component specifications
and interface specifications among components whose cooperating
behavior is consistent with each component, which is not specific
to particular technological systems. We will add this to chapter 2.
The system design method with function “a” mentioned in chapter
3 includes SA/SD and architectural design methods. In the SA/
SD method, the system design is done focusing on the data (such
as business information) that are stable against the changes in the
system environment. This enables the construction of a system
with maintainability and expandability. However, because it is a
method developed primarily for information systems, it is not very
suitable for designing anything other than the information system.
On the other hand, architectural design method has no procedures
or tasks specifically defined for a certain designing, and therefore
requires more efforts compared to specific design methods.
However, architectural design method is a universal design
method independent of some particular technological systems.
Therefore, considering the research objective of developing a
methodology not specific to particular technological systems, we
selected architectural design method as the system design method
with function “a”. The process of selecting architectural design
method from the system design methods, and the advantages and
disadvantages of the SA/SD and architectural design methods are
revised in chapter 3.

As you indicated, I do think there is a problem that this
methodology will be difficult to apply to individual problems
because it is not specific to any technological systems. For this
methodology, the attributes and the model checking tools are
selected according to the characteristics of the cooperative

behavior in the applied system using the bridge method. The
issues unique to the applied system for the cooperative behavior
are handled in this manner. We will add these to subchapter 6.2.

6 Bridge method
Comment (Motoyuki Akamatsu)

You mention that one of the outcomes of this research is that
you clarified the fact that the bridge method is necessary. Please
describe the research scenario for the bridge method, such as
why the bridge method is necessary, what requirements it has to
satisfy, and why you named it bridge method.

Since architectural design method and model checking were
developed based on two different ways of thinking, I assume that
the outputs from architectural design method were insufficient
for model checking, and I think it is natural that you needed a
technology to convert each other to connect the two items with
different concepts. Therefore, to clarify the originality of this
method, please address whether this is simply a conversion
method, or a method developed to verify the cooperative behavior.
Answer (Atsushi Katoh)

In this research, the system verification is conducted for
the cooperative behavior by components at the phase of system
design. Therefore, we focused on the cooperative behavior,
and saw it was necessary to seamlessly connect the outputs of
architectural design and the inputs of model checking. Therefore
we developed the method to derive the component specifications
and interface specif ications among components related to
the cooperative behavior, the properties to be satisfied by the
cooperative behavior, and the model checking tool to be applied.
This technology is called bridge method because it bridges
architectural design method and model checking. I believe the
bridge method is novel because it focuses on the cooperative
behavior, and we clarified the specific method for synthesizing
the system engineering standards such as IEEE 1220 and model
checking. We will add these to subchapter 4.2.

