Vol.9 No.3 2017
23/74

Research paper : High quality and large-area graphene synthesis with a high growth rate using plasma-enhanced CVD (M. Hasegawa et al.)−136−Synthesiology - English edition Vol.9 No.3 (2017) [7]S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.J. Kim, K. S. Kim, B. Özyilmaz, J.H. Ahn, B. H. Hong and S. Iijima: Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology, 5, 574–578 (2010).[8]J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa and S. Iijima: Low-temperature synthesis of large-area graphene-based transparent conductive lms using surface wave plasma chemical vapor deposition, Appl. Phys. Lett., 98, 091502-1–091502-3 (2011).[9]T. Yamada, M. Ishihara, J. Kim, M. Hasegawa and S. Iijima: A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene lms at low temperature, Carbon, 50, 2615–2619 (2012).[10]T. Yamada, J. Kim, M. Ishihara and M. Hasegawa: Low-temperature graphene synthesis using microwave plasma CVD, J. Phys. D: Appl. Phys., 46, 063001–063008 (2013).[11]T. Yamada, M. Ishihara and M. Hasegawa: Low temperature graphene synthesis from poly(methyl methacrylate) using microwave plasma treatment, Appl. Phys. Express, 6, 115102-1–115102-3 (2013).[12]Y. Okigawa, K. Tsugawa, T. Yamada, M. Ishihara and M. Hasegawa: Electrical characterization of graphene films synthesized by low-temperature microwave plasma chemical vapor deposition, Appl. Phys. Lett., 103, 153106-1–153106-4 (2013).[13]R. Kato, K. Tsugawa, T. Yamada, M. Ishihara and M. Hasegawa: Improvement of multilayer graphene synthesis on copper substrate by microwave plasma process using helium at low temperatures, Jpn. J. Appl. Phys., 53, 015505-1–015505-6 (2014).[14]R. Kato, K. Tsugawa, Y. Okigawa, M. Ishihara, T. Yamada and M. Hasegawa: Bilayer graphene synthesis by plasma treatment of copper foils without using a carbon-containing gas, Carbon, 77, 823–828 (2014).[15]Y. Okigawa, R. Kato, T. Yamada, M. Ishihara and M. Hasegawa: Electrical properties and domain sizes of graphene lms synhesized by microwave plasma treatment under a low carbon concentration, Carbon, 82, 60–66 (2015).[16]R. Kato, S. Minami, Y. Koga and M. Hasegawa: High growth rate chemical vapor deposition of graphene under low pressure by RF plasma assistance, Carbon, 96, 1008–1013 (2016).[17]Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith and A. T. C. Johnson: Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure, Chem. Mater., 23, 1441–1447 (2011).[18]G. H. Han, F. Günes, J. J. Bae, E. S. Kim, S. J. Chae, H. -J. Shin, J. Y. Choi, D. Pribat and Y. H. Lee: Inuence of copper morphology in forming nucleation seeds for graphene growth, Nano Lett., 11, 4144–4148 (2011).[19]M. L. Hartenstein, S. J. Christopher and R. K. Marcus: Evaluation of helium-argon mixed gas plasmas for bulk and depth-resolved analyses by radiofrequency glow discharge atomic emission spectroscopy, J. Anal. At. Spectrom., 14, 1039–1048 (1999).[20]P. Sigmund: Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets, Phys. Rev., 184, 383–416 (1969).[21]D-H. Kim, G-H. Lee, S. Y. Lee and D. H. Kim: Atomic scale simulation of physical sputtering of silicon oxide and silicon nitride thin lms, J. Cryst. Growth, 286, 71–77 (2006).[22]H. Sugai, I Ghanashev and M. Nagatsu: High-density flat plasma production based on surface waves, Plasma Sources Sci. Technol., 7, 192–205 (1998).[23]H. Sugai, I. Ghanashev and K. Mizuno: Transition of electron heating mode in a planar microwave discharge at low pressures, Appl. Phys. Lett., 77 (22), 3523–3525 (2000).[24]K. Tsugawa, M. Ishihara, J. Kim, M. Hasegawa and Y. Koga: Large-area and low-temperature nanodiamond coating by microwave plasma chemical vapor deposition, New Diamond Front. Carbon Technol., 16 (6), 337–346 (2006).[25]K. Tsugawa, M. Ishihara, J. Kim, Y. Koga and M. Hasegawa: Nanocrystalline diamond lm growth on plastic substrates at temperatures below 100 °C from low-temperature plasma, Phys. Rev., B82, 125460-1–125460-8 (2010).[26]J. Kim, K. Tsugawa, M. Ishihara, Y. Koga and M. Hasegawa: Large-area surface wave plasmas using microwave multi-slot antennas for nanocrystalline diamond lm deposition, Plasma Sources Sci. Technol., 19, 015003-1–015003-5 (2010).[27]K. Tsugawa, S. Kawaki, M. Ishihara, J. Kim, Y. Koga, H. Sakakita, H. Koguchi and M. Hasegawa: Nanocrystalline diamond growth in surface-wave plasma, Diamond & Related Materials, 20, 833–838 (2011).[28]Z. H. Gan, G. Q. Yu, B. K. Tay, C. M. Tan, Z. W. Zhao and Y. Q. Fu: Preparation and characterization of copper oxide thin lms deposited by ltered cathodic vacuum arc, J. Phys. D: Appl. Phys., 37 (1), 81–85, (2004).[29]J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky and M. T. Czyzyk: Electronic structure of Cu2O and CuO, Phys. Rev., B 38, 11322–11330 (1988).[30]C. C. Chusuei, M. A. Brookshier and D. W. Goodman: Correlation of relative X-ray photoelectron spectrscopy shake-up intensity with CuO particle size, Langmuir, 15, 2806–2808 (1999).[31]B. Balamurugan, B. R. Mehta and S. M. Shivaprasad: Surface-modied CuO layer in size-stabilized single-phase Cu2O nanoparticles, Appl. Phys. Lett., 79 (19), 3176–3178 (2001). [32]M. Yin, C-K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu and S. O’Brien: Copper oxide nanocrystals, J. Am. Chem. Soc., 127, 9506–9511 (2005).[33]S. K. Chawla, N. Sankarraman and J. H. Payer: Diagnostic spectra for XPS analysis of Cu-O-S-H compounds, J. Electr. Spectrosc. Relat. Phenom., 61, 1–18 (1992).[34]B. Schnyder, T. Lippert, R. Kötz, A. Wokaun, V-M. Graubner and O. Nuyken: UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry, Surf. Sci., 532–535, 1067–1071 (2003).[35]L-A. O’Hare, A. Hynes and M. R. Alexander: A methodology for curve-fitting of the XPS Si 2p core level from thin siloxane coatings, Surf. Inter. Analy., 39, 926–936 (2007).[36]J-H. Lin, H-C. Chiu, Y-R. Lin, T-K. Wen, R. A. Patil, R. S. Devan, C-H. Chen, H-W. Shiu, Y. Liou and Y-R. Ma: Electrical and chemical chracteristics of probe-induced two-dimensional SiOX protrusion layers, Appl. Phys. Lett., 102, 031603-1–031603-5 (2013).[37]M. J. Webb, P. Palmgren, P. Pal, O. Karis and H. Grennberg: A simple method to produce almost perfect graphene on highly oriented pyrolytic graphite, Carbon, 49, 3242–3249 (2011).[38]M. Finšgar, J. Kovač and I. Milošev: Surface analysis of 1-hydroxybenzotriazole and benzotriazole adsorbed on Cu by X-ray photoelectron spectroscopy, J. Electrochem. Soc.,

元のページ  ../index.html#23

このブックを見る