

国立研究開発法人産業技術総合研究所(産総研)は、1882年に創設された農商務省地質調査所を発祥とし、以来140年以上にわたりわが国の経済や社会の発展に寄与するための研究活動を続けてまいりました。

気候変動と自然災害、先進国が直面する少子高齢化、国境を超えて広がる感染症、厳しさを増す国際情勢や経済安全保障——。現在、日本のみならず全世界が、こうした複雑にからみ合うさまざまな社会課題を抱えています。私たち産総研のミッションは、科学技術によってイノベーションを生み出し、これらの社会課題を解決へと導くこと、また、日本の産業競争力の強化に貢献することです。

このミッションを達成するために、産総研は自らの将来像を日本全体の「ナショナル・イノベーション・エコシステムの中核」と定めました。そして、2030年にその姿を実現するにはいま何をすべきか検討し、経営改革を進めています。その一つが株式会社 AIST Solutions の設立です。

私たちのミッションの達成には、革新的な技術を生み出すだけではなく、その技術を確実に製品やサービスの形で社会実装することが必要です。そのために、より密接に企業にコミットする新法人を設置しました。AIST Solutions は産総研にはなかったマーケティング機能をもち、ベンチャーキャピタル等とも連携し、研究成果をより早く、より効率的に社会実装に結びつけます。この AIST Solutions を活用することで、産総研のもつポテンシャルを最大限生かしたいと考えています。

産総研は、AIST Solutions を加えた「産総研グループ」として新生しました。今後も、私たちの価値をより一層高め、社会から求められる組織であり続けられるよう努めてまいります。

皆様のご理解とますますのご支援をお願い申し上げます。

国立研究開発法人 產業技術総合研究所

理事長 兼 最高執行責任者

石村和彦

産総研つくば北サイト実験用試走路に於いて

ともに挑む。つぎを創る。

第5期中長期計画における産総研

産業技術総合研究所は、経済産業省における産業技術・イノベーション政策の中核的実施機関として、産業の科学技術に関する研究開発などの業務を総合的に行う国立研究開発法人です。

7つの研究領域を持ち、つくばセンターを中心に全国11か 所の研究拠点をおく日本最大級の公的研究機関としての総 合力を活かして、社会にイノベーションをもたらすための各種 の活動を推進していきます。

2020年から始まった5年間の第5期中長期計画では、「世界に先駆けた社会課題の解決と経済成長・産業競争力の強

化に貢献するイノベーションの創出」をミッションとして掲げ、 なかでも次の3つのテーマについて重点的に取り組むこととし ています。

- ・社会課題の解決に向けたイノベーションの主導
- ・「橋渡し」の拡充によるイノベーション・エコシステムの強化
- ・イノベーション・エコシステムを支える基盤整備

これらの取り組みの成果を最大化するために、特定国立研究開発法人として先駆的な研究所運営に取り組むとともに、技術インテリジェンスを強化・蓄積し、国家戦略などに貢献します。

産総研ビジョン『ともに挑む。つぎを創る。』

未来をデザインし、社会と共に未来を創る。互いを認め、共に挑戦する研究所を築く。

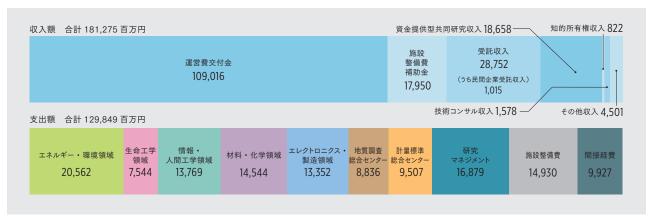
私たちの価値観

強い個の発揮と協働を通じた総合力で、多様な価値を創り出すことを大切にします。

私たちの使命

世界水準の研究のみならず、社会課題の掘り起こし・施策提言・社会実装・知的基盤整備などあらゆる活動をこれまでの産総研の枠を超えて推し進めます。

私たちの文化


志ある多様な人材が集い、互いを尊重しなが ら、共に挑戦し成長する文化を育みます。

人員·予算

人員 (2023年7月時点)	人数
研究職員	2,188
事務職員	677
計	2,865
役員(常勤)	7
招聘研究員	289
ポスドク	170
テクニカルスタッフ	1,508

産学官連携制度等 (2022 年度受入延べ数)	人数
企業から	1,760
大学から	2,082
独法・公設試等から	635

2022 年度決算額 (単位: 百万円)

産総研の研究領域

Energy and Environment

エネルギー・環境領域

電池技術研究部門 省エネルギー研究部門 安全科学研究部門 エネルギープロセス研究部門 環境創生研究部門 先進パワーエレクトロニクス研究センター 再生可能エネルギー研究センター ゼロエミッション国際共同研究センター

envene-liaison-ml@aist.go.jp 🛕

Life Science and Biotechnology

生命工学領域

健康医工学研究部門 細胞分子工学研究部門 バイオメディカル研究部門 生物プロセス研究部門

life-liaison-ml@aist.go.jp

Information Technology and Human Factors

情報・人間工学領域

人間情報インタラクション研究部門 人工知能研究センター サイバーフィジカルセキュリティ研究センター 人間拡張研究センター インダストリアルCPS研究センター ヒューマンモビリティ研究センター デジタルアーキテクチャ研究センター

ith-liaison-ml@aist.go.jp 🛕

Materials and Chemistry

材料・化学領域

機能化学研究部門 化学プロセス研究部門 ナノ材料研究部門 極限機能材料研究部門 マルチマテリアル研究部門 触媒化学融合研究センター 機能材料コンピュテーショナルデザイン研究センター 磁性粉末冶金研究センター ナノカーボンデバイス研究センター

mc-liaison-ml@aist.go.jp 🛕

Electronics and Manufacturing

エレクトロニクス・製造領域

デバイス技術研究部門 電子光基礎技術研究部門 製造技術研究部門 センシングシステム研究センター 新原理コンピューティング研究センター プラットフォームフォトニクス研究センター 先端半導体研究センター

rpd-eleman-ml@aist.go.jp 🛕

Geological Survey of Japan

地質調査総合センター

活断層・火山研究部門 地圏資源環境研究部門 地質情報研究部門 地質情報基盤センター

geo-liaison-ml@aist.go.jp 🛕

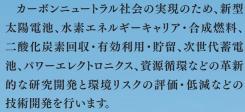
National Metrology Institute of Japan

計量標準総合センター

工学計測標準研究部門 物理計測標準研究部門 物質計測標準研究部門 分析計測標準研究部門 計量標準普及センター

nmij-info-ml@aist.go.jp 🛕

特別の組織


2023年7月設立

量子・AI 融合技術ビジネス開発グローバル研究センター

Global Research and Development Center for Business by Quantum-Al Technology

M-G-QuAT-soukatsu-ml@aist.go.jp 🚖

海水を利用した太陽光水素製造技術

都市域のCO₂排出量を高精度計測

出量と大気中の O2およびCO2濃 度を同時に計測 し、使用された化 石燃料の種類ごと に評価する手法を 開発しています。

排出物質や廃棄物を資源として再利用し、消費 資源循環型社会を目指しエネルギー・環境制約への対応 と再生のサイクルを実現する資源循環技術は、従来 の資源消費型社会がもたらすさまざまな社会課題 を解決するためのキーテクノロジーです。資源循環 型社会への産業構造のシフトを目指し、資源の高 度利用技術とシステム評価技術の開発を行います。 窒素循環技術の開発 プルシアンブルー 型錯体によるアン モニアの吸着回収 と、窒素の再利用 技術の開発を進 めています。 CO2分離・回収技術の開発 計算化学的手法を 用い、CO2を省エネ ルギーで分離する ゼオライト膜の開発 を進めています。 電磁撹拌装置での高純度アルミニウム回収実験

労働生産性向上サイバーフィジカルシステム活用に

少子高齢化の対策

臨海副都心センターCPS棟つながる工場実証環境

生産年齢人口の減少に伴い、労働生産性の向上や技能の継承・高度化が全ての産業分野に共通する社会課題となっています。これらの社会課題解決には、人と機械が協調したサイバーフィジカルシステム(CPS)の構築と活用が鍵となります。CPSにおける価値創造の基盤技術を開発し、産業界と連携してその実現に貢献していきます。

リモートワークに対応する人-機械 協調技術の研究開発

構築したサイバー 世界を記憶として 活用し、物流模擬 環境においてロ ボットが自律的に 判断します。

AIを活用したデータ同化技術による 技能伝承

熟練者の加工作業を学習し、対象物の物理パラメーターを推定することで、最適な加工条件を決定します。

健康寿命を延伸させるため、日常生活の中で一人一人の健康状態をさりげなくモニタリングし、個人に適合した介入を行う技術およびサービスの研究開発を行っています。これにより、誰もが安心して健康に生きることができる社会の実現を目指します。

健康阻害要因を推定するシステム

歩行や運動データ から転倒リスクを 推定するシステム の開発を行なって います。

日常生活で使用できる 健康モニタリング技術

実現に向けてユニバーサルメディカルアクセスのッチ高齢化の対策

遠隔自動診断プラットフォーム

社会課題の一つである少子高齢化の解決のために、誰もがいつでも、どこでも、どんな状況でも不安無く質の高い医療・介護にアクセスできる医療システム(ユニバーサルメディカルアクセス)による生涯現役社会の実現を目指します。

中長期体外式補助人工心臓の開発

転移性がんの迅速検査デバイスの開発

転移性がんによる 死亡者で、 が、派に存中で が、かる でなり、 でなかれる でなり、 でなりで でなりで でなりで でなりで でなりで でなりで が としなディスを 出できるディスを 開発しています。

安心な未来のためのインフラ技術

今後10年間で我が国のインフラは急激に老朽 化が進むことから、自動化された信頼性の高い検 査技術の開発が望まれています。また長寿命化を 実現するための新素材の開発も社会的な課題に なっています。産総研で開発しているさまざまな技術 を融合し、持続可能なインフラの実現に貢献する新 しい技術の確立を目指します。

カメラ撮影による橋の変形測定

画像解析から橋のたわみを計測するなど、ITを検ささせる。 技術に統合させた ことで省力化した 診断技術を開発します。

酸化チタンコートによる インフラの防汚・耐侯化

產総研

酸化チタントなど、 はっ水コートなど、 物性評価をせてしている。 スに反映させて材 料開発を加速力 インフラの長寿 化を図ります。

デジタルX線非破壊検査装置を搭載した自動配管点検ロボット

全国に展開する研究拠点

産総研は、全国各地に独自の強みを持つ地域拠点を配置しています。 地元企業のニーズへの対応、大学などの研究機関や企業との連携により、地域活性化に貢献しています。

■つくばセンター

〒305-8560 茨城県つくば市梅園1-1-1

7つ全ての研究領域が集まる産総研の中核的な研究拠点として、産 学官の密接な連携を図りながら、社会課題の解決に向けた研究開 発を推進しています。

本部機能も有するつくばセンター

■東北センター: 資源循環技術

〒983-8551 宮城県仙台市宮城野区苦竹4-2-1

合成や分離など化学プロセスの高度化と高機能材料の開発、材料 設計への数学の活用を推進するとともに、資源循環技術に関する 中核機関の役割を担います。

省エネ分離技術に用いるゼオライト膜モジュール

■柏センター: AI・人間工学

〒277-0882 千葉県柏市柏の葉6-2-3 東京大学柏 II キャンパス

人工知能(AI)やセンシング技術で人の能力を増強する人間拡張 技術により、人の持つ能力の維持や増進を可能とするサービスの 社会実装を目指します。

サービスフィールドシミュレータ

■北海道センター: バイオものづくり

〒062-8517 北海道札幌市豊平区月寒東2条17-2-1

植物および微生物を用いた物質生産プラットフォームの開発など、 生物の力を使った新しい物質生産技術の研究開発を推進してい ます。

有用物質を生産する植物の栽培

■福島再生可能エネルギー研究所: 再生可能エネルギー

〒963-0298 福島県郡山市待池台2-2-9

世界に開かれた再生可能エネルギー研究開発を推進するとともに、新しい産業の集積を通して被災地域の復興に貢献します。

スマートシステム研究棟の電波暗室

■臨海副都心センター: デジタル・AI、ゼロエミ、バイオ

〒135-0064 東京都江東区青海2-3-26

グリーン社会・デジタル社会の実現に向けた国際的な融合研究拠点として、オープンイノベーションを推進します。

サイバーフィジカルシステム研究棟

■中部センター:機能部材

〒463-8560 愛知県名古屋市守山区桜坂4-205

機能部材の研究開発を推進し、技術の社会実装を目指した有機的な交流や連携を通して、ものづくり産業の集積地である中部地域から未来の創生、産業の活性化に貢献します。

超薄板窒化ケイ素セラミックス基板

■関西センター:電池技術、バイオ医療、生活素材

〒563-8577 大阪府池田市緑丘1-8-31

電池、バイオ医療、材料、情報の4つの技術分野の研究成果を社会実装することにより、産業の発展と豊かな暮らしの実現を目指します。

試作したリチウムイオン電池

■四国センター: ヘルスケア

〒761-0395 香川県高松市林町2217-14

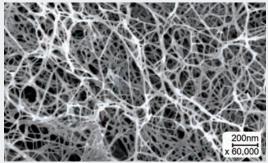
人の健康状態の計測と見える化、そして健康の維持・増進に向けた研究開発を通して「健幸長寿社会」の実現を目指しています。

簡易検査・診断チップ

■北陸デジタルものづくりセンター:デジタルものづくり

〒919-0462 福井県坂井市春江町江留上大和10-2

デジタル技術を活用して金属加工業や繊維産業等を高付加価値 化する挑戦的なものづくり技術の開発を推進しています。



金属3Dプリンタで造形した高放熱性形状の金属部品

■中国センター: 材料診断技術

〒739-0046 広島県東広島市鏡山3-11-32

機能性化学品を低環境負荷で創製するための基盤技術や、化学 材料を適材適所で使いこなすための評価・診断技術の開発を推 進しています。

電子顕微鏡で観察したセルロースナノファイバー

■九州センター: スマート製造センシング

〒841-0052 佐賀県鳥栖市宿町807-1

材料、プロセス、デバイス、計測、情報に関する技術を駆使し、スマート製造の実現に資するセンシングシステム技術の研究開発を推進して新たな価値創出を目指しています。

ダイヤモンド電子舌センサ

株式会社AIST Solutionsの設立

産総研は「社会課題解決と産業競争力強化」というミッションの達成を目指し、研究成果の社会実装に向けた体制と活動を強化してきました。2023 年 4 月、科学技術・イノベーション創出の活性化に関する法律に基づき、産総研の 100%出資により株式会社 AIST Solutions (アイストソリューションズ、以下「AISol」という)を設立しました。

AISol は企業ニーズの取り込みや社会課題解決の提案力を強化すべく、産総研がこれまで培ってきた技術を組み込み、「エナジーソリューション」、「AI・半導体」、「サーキュラーエコノミー」、「マテリアル DX」、「バイオ・ウェルビーイング」、「デジタルプラットフォーム」の6つのソリューション領域を構築しています。これらの分野を中心に、技術資産の提供、共同研究のコーディネーションに取り組みます。また、社会実装に向けた実証プロジェクトの実施やバリューチェーンの構築、スタートアップの創出を推進していきます。

技術資産

知的資産

● ライセンス ● 知財情報の提供

研究•技術設備

●研究設備提供 ●エンジニアリング設備提供

技術コンサルティング

●測定、分析、診断 ●ソリューション提供

共同研究

- ●市場調査・分析
- PoC·MVP開発
- •プロトタイプの社会実装

事業共創

- 社会課題解決
- バリューチェーン構築
- スタートアップ事業創出

AlSolの事業

イノベーションを創出する人材の育成と継承

あらゆる職種・年代の人材が活躍できる人事制度を導入しています。

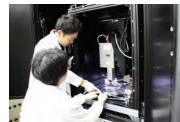
■クロスアポイントメント制度

産総研では「橋渡し」研究の中核機関として、組織の壁を越えた研究体制を構築するために、研究者が複数の機関に所属し、それぞれの機関における役割に応じて研究・開発および教育に従事することができる制度を設けています。

■技術研修

大学・企業・公設研究所などの研究者・技術者を産総研に一定期間受け入れ、産総研研究者の指導のもと、技術を習得していただく制度です。学生には、インターンシップから学位取得の研究指導まで幅広く対応しています。

■産総研リサーチアシスタント(RA)


優秀な大学院生が経済的な不安を減らして学位取得のための研究活動に専念できるよう、産総研に雇用する制度です。RAは、産総研が実施している研究開発プロジェクトに参画し、その成果を学位論文などに活用していただけます。

■産総研イノベーションスクール

産総研イノベーションスクールは2008年から始まった若手研究人材育成制度で、これまでに500名以上が修了しています。博士人材、大学院生それぞれのニーズに合わせた2つのコースで科学的・技術的な知見を深めつつ、より広い視野を持ち、異なる分野の専門家と協力するコミュニケーション能力や連携力を有する人材として育成することを目指しています。

■産総研デザインスクール

産総研デザインスクールでは、実際の社会課題を探索する対象としながら、デザイン思考、システム思考や未来洞察などの手法を学びます。社会のなかで未来を俯瞰し、さまざまなステークホルダーと共創し、社会のためにプロジェクトを実践できる人材の育成を目指して、産総研と企業の職員が一緒に学べる場を提供しています。

産総研研究者とともに研究に取り組むRA

KAOSPILOTでの産総研デザインスクールワークショップ

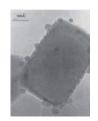
研究成果ハイライト

産総研は、1882年の地質調査所創立に始まり、前身となる工業技術院時代から今に至るまで、 科学史に残るような画期的な研究開発を数多く成し遂げています。 1880年代から現在まで、約140年間の代表的な成果などをご紹介します。

■300万分の1地質図

1880 年代 地質調査所は、1882年の創立から わずか7年後の1889年に、わが国初 の日本地質総図を出版しました。地 質調査所の歴史は、明治時代初期 の外国人による指導に始まるわが国 の地質学や鉱工業の発展に深くかか わっています。

1980


1980

2000

2000

■金ナノ粒子の触媒作用

金は触媒機能が無いと考えられていましたが、大阪工業技術試験所は1982年、3~4 nmの金ナノ粒子を金属酸化物表面に担持させることで、特異的に高い触媒活性を示すことを発見しました。低温でも優れた活性を示し、脱臭触媒や一酸化炭素の無害化、ガスセンサーなどの商業用途への道を祈きました。

■国産技術によるアンモニア合成法(東工試法)

1**92**0

臨時窒素研究所は、強力で耐久性に優れたアンモニア合成用工業触媒を開発し、国産のアンモニア合成技術を確立しました。これはわが国初の大型プロジェクト方式による成果であり、「東工試法アンモニア合成技術」として世界的に認められています。

■ニッケル水素電池の基礎となる負極用合金

ハイブリッド車に搭載されているニッケル水素電池は1970年代から大阪工業技術試験所で研究が始まり、1990年頃に鉛蓄電池の半分の重量で同等の性能をもつニッケル水素電池が誕生しました。据置型の大型電池としても注目されています。

■トランジスタ計算機 Mark-IV

1950 ^{年代} 電気試験所は、1956年にわが国初のトランジスタ・コンピュータとなる「ETL Mark-III」を完成させました。同機をMark-IV、Mark-IVAと進化させ、わが国の電子計算機の商業化への道を拓きました。

■単層カーボンナノチューブの画期的な合成技術

単層カーボンナノチューブ(SWCNT)の画期的な合成技術「スーパーグロース法」を開発し、それまでの1000倍以上の合成効率を

実現しました。従来の方法と比べてきわめて高い純度のSWCNTを合成できるなど、さまざまな優れた特長をもっているため、量産化を実現する技術として期待されています。

■PAN 系炭素繊維

1950

衣料などに使われるPAN繊維を原料とする軽量・高強度の炭素繊維は、1959年に大阪工業技術試験所が世界に先駆けて開発しました。1960年代に商用化に向けた研究が始まり、今では釣り竿から航空機まで幅広く使われています。

■HDD用磁気ヘッドに最適な高性能TMR素子

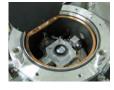
トンネル磁気抵抗素子(TMR素子)の絶縁 体層に酸化マグネシウムの結晶体を用いる ことで、それまでの倍以上の記録密度を持 つHDD磁気ヘッドを実現しました。この手 法で作製されたTMR素子は、現在生産さ れている全てのHDDに搭載されています。

写真提供:富士通株式会社

■清涼飲料水の甘味料生産に必要な グルコースイソメラーゼ製造法

1960

発酵研究所が、グルコースイソメラーゼをグルコースに作用させて甘みの強い 果糖とする製法を開発しました。米国をはじめ多くの国内外企業と実施契約を締結し、世界的に利用されることになりました。



2010

■キログラムの定義改定を導いたプランク定数測定

シリコン単結晶球の形状を精密に評価する技術を開発し、プラン

ク定数の高精度測定に成功しました。 2019年、産総研など5カ国の研究機 関の測定から定めたプランク定数が、 約130年間使われてきた国際キログラ ム原器に替わって、質量の単位「キロ グラム」の定義の基準になりました。

■透明導電膜の製造法

液晶ディスプレーや太陽電池に欠かせない酸化インジウム透明導電膜(ITO)は、大阪工業技術試験所が世界で初めて、その工業的製造技術を開発しました。液晶電卓の工業化に貢献し、現在の巨大市場へつながっています。

総合お問い合わせ

 $\begin{tabular}{ll} \blacksquare https://www.aist.go.jp/aist_j/inquiry/form/inquiry_form.html \end{tabular}$

協業・提携のご案内

https://www.aist.go.jp/aist_j/business/alliance/index.html

研究成果

https://www.aist.go.jp/aist_j/research/

見学施設

- $\begin{tabular}{ll} \blacksquare https://www.aist.go.jp/aist_j/guidemap/exhibition/index.html \end{tabular}$
- サイエンス・スクエアつくば
- 地質標本館
- ライフ・テクノロジー・スタジオ

採用情報

https://www.aist.go.jp/aist_j/humanres/

国立研究開発法人

産業技術総合研究所

https://www.aist.go.jp