半導体生産計測技術における本格研究 CMP 処理後のウエハー・マイクロクラック 検出装置の開発

CMP 処理とマイクロクラック発生

CMP とは Chemical Mechanical Polishing (化学的機械的研磨)の略称であり、ウエ ハー表面凹凸の平坦化に用いられていま す。これは超LSIの高集積化を支える多 層配線化には必須の技術になっています。 ところが、ウエハーと研磨砥粒 (スラリー) との機械的な相互作用のため、条件によっ ては、ウエハーにマイクロクラック(ス クラッチ)と呼ばれる微小欠陥が形成さ れます。この欠陥は、多くの場合図1に 示すように、ウエハー表層部に閉じたク ラックとして存在するため、CMP処理直 後の非破壊検査ではその検出は困難です。 このような欠陥があると、その後の電気 検査を通り抜け、製品出荷後の経時変化 で電気的短絡や回路断線など、製品不具 合をまねくことが危惧されます。このた めLSI製造現場からは、不良ゼロ、信頼 性向上を目指したインライン検査装置の 開発が渇望されています。

隠れたクラックをどうやって顕在化させ るのか、二つのプローブで限界を突破

これまでの光散乱法の限界

プロセス中に発生する異物や欠陥の 検出については、操作性や短い検査時 間などから"光"をプローブにした方 法が主流です。このうち、光散乱法は 波長より小さいサイズの欠陥・異物の

図 1 CMP 処理後のウエハー表面および断面の観察例 (a) エッチング前(AFM)、(b) エッチング後(AFM)、(c) エッチング後(断面 SEM)

評価が可能なのでLSI製造現場でもよ く使われています。しかし、今回目的 とするウエハー表層のマイクロクラッ クに対しては無力に近い状況です。実 際、生産現場で現在使用されている代 表的な評価機(1台数億円)ではまっ たく検出されませんでした。

ブレイクスルーのきっかけ

私たちは数年前に光散乱法による人 工水晶内の欠陥検出の取り組みの中 で、種結晶内の空洞欠陥を見つけまし た。ここでは、ほかの析出物との区別 した検出が課題でした。しかし、さま ざまな光学的アプローチを試みたもの の、良好な結果は得られませんでした。

試行錯誤の末、析出物と空洞欠陥で はその中身の"硬さ"に大きな差異の あることに気づき、機械的作用を第二 のプローブとして追加してはどうか、 という結論に達しました。そこで、実

Siウエハーへの適用

ウエハー表層の絶縁膜中(SiO。な ど)のクラックについては、長さは数 100 nm ~ 数 um (深さはその約半分) が検査対象です。この検出には、水晶 での経験から光散乱法に光弾性効果を 適用した方法を検討しました。シミュ レーションの結果、クラック先端近傍 にはウエハーに加わる外力(数MPa 程度の引張り)の数百倍に達する応力 集中の生じることがわかりました。た だし、絶縁膜の光弾性定数は~10⁻⁵ MPa⁻¹程度と小さいため、散乱光の光 量変化を1%以下の精度で計測する必 要がありました。ところが、パターン 付きウエハーでは、金属配線からの散 乱光が強いノイズ源となります。さら に、レーザーの安定性、装置の振動、 ウエハー全体にわたる均一性など、微 小試験片を用いた"実験室"では通常 問題とならない"工場現場の環境"を 考慮することが、装置化への大きな課

1991年に九州工業技術試験所に入所。産総研に組 織改編後、基礎素材研究部門、実環境計測・診断研究 ラボ、2007年から当研究センター。専門は、セラミッ クス材料の研究でしたが、光関係から計測分野に移行。 半導体や FPC についてマイスター連携研究を中心に、 インライン検査技術およびプロセス管理技術の研究開 発をはじめ、官能検査の標準化にも取り組んでいます。

野中 一洋(のなか かずひろ) k.nonaka@aist.go.jp 生産計測技術研究センター 主幹研究員(九州センター)

図2 クラック検出装置の概要

題となります。現場の環境をよく検討 してみると、散乱強度の変化を捉える だけでは十分なS/Nは得られないと 判断されました。

検討を重ねた結果、これらの問題は 偏光成分の変化(差分)に着目するこ とによって解決することができまし た。配線パターンからの散乱では、入 射光の偏光状態が保持されるので、ア ナライザー(偏光板)でその大部分を 取り除くことができます。一方、表面 付着異物(上ゴミ)などは応力印加の 影響を受けないため、応力印加前後で 差分をとることにより、クラックによ る偏光成分の変化のみを取り出すこと ができます。

振り返ってみれば、研究としてク ラックを検出するだけであれば、応力 印加による散乱強度の変化を丁寧に見 ることで終わっていたのかもしれませ ん。研究から現場を目指すにあたって、 "偏光と差分"に気づいたことで現場 適応への道が切り開かれたことは大き な収穫でした。

クラック検出装置の実用化に向けて

図2に開発したクラック検出装置の 概要を示します。応力はウエハー中央 の下部から圧電素子などで振動を与え て、ウエハー表層に数MPaの引張り応 力を加えます。レーザー光はウエハー に対して入射角約80~85°で入射しま す。あらかじめ応力を印加しない状態 でウエハーの各点からの散乱光の偏光 分布を計測し、応力印加後の分布との 差を求めることでクラックを検出しま す。得られたクラック分布を図3に示 します。

現在、開発した装置の実用化に向け て装置の改善・改良を急ピッチで進め ています。さらに、技術の新たな展開 としては、CMP材料や精密加工などの 関連分野への展開だけではなく、パワー デバイスや光デバイスとして期待され ている次世代半導体の評価技術として の応用を検討しているところです。

謝辞

CMPウエハー検査では、ルネサス セミコンダクタ九州・山口株式会社の 猿渡 新水氏および山口 信介氏に種々 のご助言・ご協力をいただきました。 心より感謝申し上げます。

図 3 試作機で評価したパターン付き 200 mm ウエハー製品 (エッチング前) のクラック分布図 (a)、 ウエハー表面(エッチング後)の SEM 像(b)~(e)