ゲノムDNAの新しい電子輸送機構を発見 アト秒の時間で動く伝導電子を観測する手法を開発

池浦 広美 いけうら ひろみ ikeura-sekiguchi@aist.go.jp

計測フロンティア研究部門 光・量子イメージング技術研究グループ 主任研究員 (つくばセンター)

旧電子技術総合研究所では放 射線標準と計測の研究に従事。 産総研発足当時は在外研究員 制度により軟X線顕微鏡の研 究に従事、帰国後は加速器か らのX線を利用した分光やイ メージングなどの計測ツール の開発研究を行い、無機・有 機材料の物性をはじめ未解明 の生命現象について物理と化 学の立場からの解明を目指し ています。

関連情報:

共同研究者

関口 哲弘(独立行政法人 日本 原子力研究開発機構)

参考文献

[1]H.lkeura - Sekiguchi, T. Sekiguchi : *Phys. Rev. Lett.* 99, 228102 (2007).

[2] 池浦広美, 関口哲弘: 日本 放射光学会誌, 21(5), 印刷中 (2008).

○ 海外メディア報道

2007 年 12 月 17 日 *PhysicsWorld 誌*(WEB版) (英国物理学協会)

2008 年 1 月 30 日 *Neue Zürcher Zeitung新聞* (スイス)

実験は大学共同利用機関法 人 高エネルギー加速器研究機 構 物質構造科学研究所 BL-27A および日本原子力研究開 発機構のエンドステーション を利用して実施しました。

この研究の一部は、文部科
学省原子力試験研究費により
実施されたものです。

がん化や老化のメカニズム解明への期待

DNAは生命の設計図が刻み込まれた直径約2 nmの細長い紐状の物質で、ヒトの体細胞では 長さ約2 mもあり、直径約10 µmの細胞核にタ ンパク質に巻きついた構造で複雑に折りたた まれて収納されています。細胞内にはDNAに 発生した傷を1分以内に速やかに修復を始める 能力があるといわれています。DNAの傷の修 復機構がうまく働かないと発がん、老化など が引き起こされます。DNAの傷の場所は特別 なタンパク質がDNAに沿って動くことで感知 しているといわれていますが、果たしてそれ だけでこのように長いDNAについたさまざま な種類の傷を瞬時に見つけだすことができる のでしょうか。

そこで登場するのが電荷輸送機構です。もし DNAが金属のような導線であったら、私たち はどんなに長い線でもテスターをあてて抵抗を 測ることで断線の場所を知ることができます。 DNAの場合も同様に、離れた場所にくっつい たタンパク質がテスターの端子のように振る舞 い、電荷輸送機構を利用して瞬時に傷を見つけ ているとは考えられないでしょうか。

DNAの新しい電子輸送機構を発見

これまで塩基の重なりを通して電子や正孔の 輸送が起こることは知られていました。私たち はリン酸骨格の電子輸送機構を初めて実証しま した^[1]。リン酸骨格のつくる伝導帯は塩基に比

図1 DNA の電子輸送機構(赤と青の鎖の部分が リン酸骨格、黄色い部分が塩基対)

べてエネルギーが高いところにあるため、次の ような計測法を考案しました。

まず、X線を使ってリン酸骨格のリン原子の 内殻電子を励起します。電子が励起したリン原 子の周りに束縛されている場合はスペクテー ターオージェ過程で、一方、電子がリン酸骨格 を通って移動する場合はノーマルオージェ過程 で電子が放出されます。

リン原子に生じた内殻正孔が外殻からの電子に よって埋められるまでの時間は1.25フェムト(10⁻¹⁵ =1000兆分の1)秒で、その間に電子がリン原子か ら離れたときにノーマルオージェが起こるため、 正孔寿命を時計として利用すると、2つのオージェ 過程の相対収量比から電子が伝導帯を通って移動 する時間が計測できます。水和したDNAでは約 740アト(10⁻¹⁸=100京分の1)秒と求められ、リン 酸骨格のつくる伝導帯が導体としての電子輸送特 性をもつことが明らかになりました。

一方、チオリン酸基を導入した非周期性のリ ン酸骨格をもつアンチセンスDNAでは電子輸 送機構が見られなかったことから、周期性が重 要な役割をもつことも明らかになりました。

今後の展開

DNAの電荷輸送現象は不明な点が多く、発 見した主鎖の電子伝導性も含めて今後さらに研 究を進めていくことが必要です。将来的には電 荷輸送現象とがん化や老化のメカニズムとの関 係を明らかにすることを目指します。

図2 アト秒領域の電子移動の計測手法の概念図 (図は [1] に掲載されたものを修正して使用)