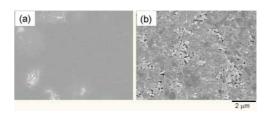

Water Splitting Reaction under Visible Light using Artificial Photosynthesis (Z-Scheme) Mechanism

¬Kazuhiro SAYAMA Photoreactions Control Research Center e-mail: k.sayama@aist.go.jp AIST Today Vol. 2, No. 2 (2002) 7 The stoichiometric water decomposition into H_2 and O_2 ($H_2/O_2 = 2$) under visible light irradiation (> 410 nm) took place for the first time using an IO₃-/I- redox mediator and mix-

ture of Pt-WO₃ and Pt-SrTiO₃ (Cr-Ta doped) photocatalysts suspension. The quantum efficiency was ca. 0.03% (at 420.7 nm).



Mimetic mechanism of photosynthesis in plant (artificial photosynthesis)

Development of Silicon Nitride with High Wear Resistance

Kiyoshi HIRAO Synergy Materials Research Center e-mail: k-hirao@aist.go.jp AIST Today Vol. 2, No. 2 (2002) 12

Advanced structural ceramics such as Al₂O₃, SiC and Si₃N₄, are promising frictional materials. Because of their high hardness, high heat resistance and chemical stability, Among them, silicon nitride (Si₃N₄) is well known as a representative structural ceramic having excellent mechanical and thermal properties. However, the wear resistance of Si₃N₄ is rather low compared to Al₂O₃ or SiC as the relatively weak interfacial strength between the Si₃N₄ grains gives rise to grains dropping during sliding. This problem could be resolved in Si₃N₄ with uni-directionally aligned elongated grains, which can be fabricated by the combination of seeding and extrusion: the plane normal to the grain alignment in the textured Si₃N₄ exhibits a low wear rate (1/10 compared to the conven-)tional Si₃N₄) combined with a low friction coefficient (about 0.3). The worn surface after sliding was quite smooth in the specimen, although that for the conventional Si₃N₄ was irregular owing to grain dropping, as shown in the figure. The high wear resistance achieved in this plane is attributable to the inhibition of crack propagation along the sliding surface by the stacked elongated grains normal to the sliding surface. It is expected that this material can be used in a wide range of applications as a frictional material having superior mechanical, thermal and wear properties.

Worn surfaces of (a) the plane normal to grain alignment in a textured Si_3N_4 , and (b) a conventional Si_3N_4 : wear tests were carried out using a Block-on-Ring tester under dry condition in air at a sliding speed of 1.5 m/s, a normal load of 5 N and a sliding distance of 75 m.