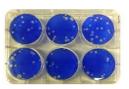


「迅速診断用PCR機器の開発」

技術を社会へ-Integration for Innovation

国立研究開発法人 産業技術総合研究所

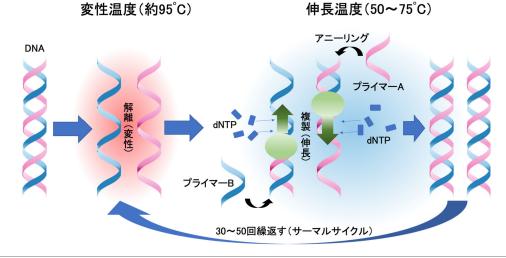


新興ウイルスの脅威と課題

- ・ 新興ウイルスによる脅威の増大
 - COVID-19、SARS、MERS、高病原性インフルエンザ、 エボラ出血熱、デング熱、ジカ熱等
- 現場検査法(POCT)に適した高感度検査法の欠如
 - 簡便なイムノクロマト法は低感度
 - 確定検査法(培養・核酸検査法)は分析時間に課題

簡易検査法 はやい! でも感度が足りない イムノクロマト法(~15分)

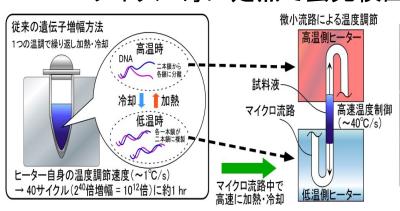
プラーク測定法(~4日)

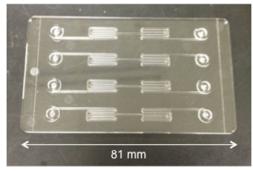

リアルタイムPCR装置 (~2時間)

PCR法

- ・耐熱性DNAポリメラーゼ(合成酵素)を用いて DNAを増幅する強力な手法
 - サーマルサイクルにより倍加し指数関数的に増幅

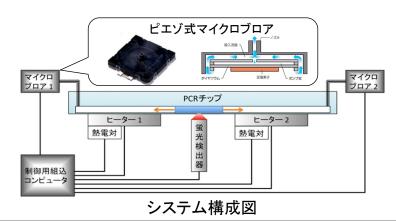
技術を社会へ-Integration for Innovation

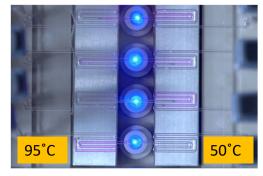

3


国立研究開発法人 産業技術総合研究所

往復送液型リアルタイムPCR(qPCR)

- ・ 試料プラグを往復送液
 - 流体制御による高速な熱交換
 - 強制対流により反応を迅速化
- 1) 連続流
 PCR 溶液 混合は拡散依存
 2) セグメントフローPCR
 空気 空気 空気 空気 高速対流
- サイクル毎に定点で蛍光検出することでqPCR




リアルタイムPCR用チップ

高速リアルタイムPCRの基本特許

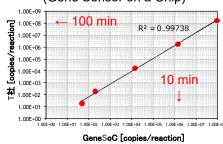
- 「核酸増幅方法」特許第6226284号(2014.7.8出願)
 - 流路内の送液にポンプではなくブロアを使用
 - ・ポンプでは加圧・減圧による →圧が釣り合うまで移動
 - ・ブロアでは静圧による →ブロア停止と共に瞬時に停止

リアルタイムPCR用チップ

技術を社会へ-Integration for Innovation

5

国立研究開発法人 産業技術総合研究所


迅速検知可能な測定対象

- ・ 各種病原性微生物を迅速検出可能
 - インフルエンザウイルス
 - ノロウイルス
 - 結核菌
 - 性感染症(STD)起炎菌
 - 麻疹・風疹ウイルス
 - 一般グラム陰性菌/陽性菌
 - 尿中膀胱癌関連遺伝子変異
 - エボラウイルス(人工遺伝子)
 - 腸管出血性大腸菌(人工遺伝子)
 - ネコ白血病ウイルス
 - キュウリモザイクウイルス(植物ウイルス)

高速リアルタイムPCR装置「GeneSoC®」

(Gene Sensor on a Chip)

既存装置との相関(結核菌)

基礎研究から実用化へ

- ・ 発明の原理検証から幅広い用途への展開
 - パンデミック対策
 - 感染症のPOCT
 - 癌関連の遺伝子変異に基づく腫瘍の質的診断

産総研

産総研発ベンチャー (株)ジェイタス 杏林製薬(株)

產総研

独占実施権 特許の共有

吸収合併 権利承継

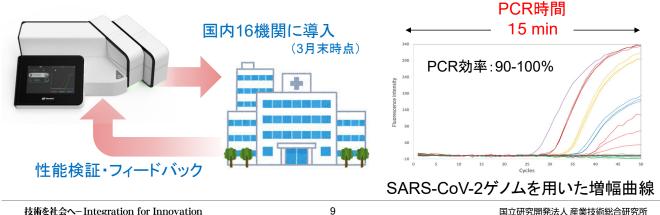
抗菌薬を含む製薬事業の展開診断、予防、治療の一体的推進

超高速PCRの 基本特許 超高速リアルタイム PCR装置の<mark>販売</mark>

2014.7 2015.1 2017.7 2019.11

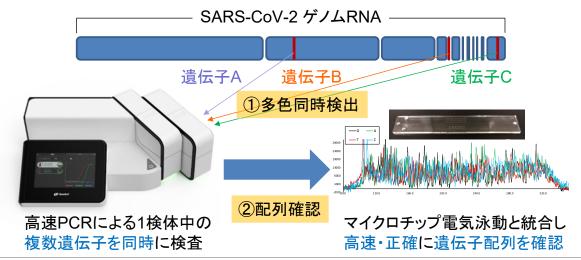
7

技術を社会へ-Integration for Innovation


国立研究開発法人 産業技術総合研究所

迅速なCOVID-19検査の社会実装

- 令和元年度迅速ウイルス検出機器導入実証事業にて SARS-CoV-2の迅速検査法検証のため病院等へ導入
 - COVID-19用高速PCR検査試薬を開発
 - · 高速なPCR:15分以内
 - ・高感度な検出:従来のPCR装置と同等


技術を社会へ-Integration for Innovation

国立研究開発法人 産業技術総合研究所

新型コロナウイルスの信頼性の 高い迅速診断システムの開発

令和2年度ウイルス等感染症対策技術の開発事業にて SARS-CoV-2の突然変異に対応可能な手法を開発中

製品化されているPCR装置の比較

タイプ	迅速·POCT	汎用装置	迅速·POCT	自動化	自動化	自動化
製品名	GeneSoC	QuantStudio 3	Cobas Liat	Verigene	GeneXpert	BDmax
	杏林製薬	Roche	Roche	日立ハイテクノロジーズ	BeckmanCoulter	BectonDickinson
分析時間	○	×	O	×	×	×
[min]	6~15 min	60 min	20~ min	120~180 min	30∼120 min	120~ min
サイズ [cm]	O 40 x 25 x 25 cm	× 27 x 50 x 40 cm	O 11 x 24 x 19 cm	× 19 x 58 x 48 cm 30 x 52 x 32 cm	× 71 x 34 x 66 cm	× 72 x 94 x 75 cm
重量	O	○	○	×	×	×
[kg]	5 kg	27 kg	4 kg	11.3+17.3 kg	57 kg	125 kg
定量性	○ 定量PCR可能	○ 定量PCR可能	○ 定量PCR可能	×	○ 定量PCR可能	○ 定量PCR可能
マルチ	〇	〇	〇	〇	〇	○
検出	(最大3)	(最大4、6)	(最大6)	(15以上)	(最大5)	(最大10)
検体 処理数	1~4 (割込測定可)	96	1	1	16(2、4もあり)	24

技術を社会へ-Integration for Innovation

11

国立研究開発法人 産業技術総合研究所

