大気圧電子顕微鏡 ASEM による水中観察法の開発

― 半導体の超薄膜技術とバイオ顕微鏡の融合研究 -

小椋 俊彦¹、西山 英利²、須賀 三雄²、佐藤 主税^{3*}

タンパク質の組織内・細胞内での分布は高度に制御されており、刺激に応じて数秒以内にダイナミックに変化することも多い。このよう な分子機構が脳等の情報処理を支えており、その解明には多要素の変化を時間経過と共に解析する必要がある。そのため、迅速な 試料作製と高分解能観察が可能な高スループット電子顕微鏡(電顕)が求められている。新開発の大気圧走査電顕(ASEM)は、水 溶液中の試料をディッシュ底の薄膜を透して倒立走査電顕で観察する。試料は脱水なしに光学顕微鏡(光顕)並の短い手間で作製で き、分解能は薄膜近くで8 nmである。細胞や組織の分子分布、さらには電気化学反応や金属の融解・凝固も観察でき、癌や感染症の 診断機器として期待される。

キーワード:光・電子相関顕微鏡、微小管、Stromal interaction molecule 1 (STIM 1)、免疫電子顕微鏡法、電気化学反応

Development of an in-solution observation method using atmospheric scanning electron microscopy (ASEM)

 Interdisciplinary research between semiconductor fabrication technology and biological electron microscopy –

Toshihiko Ogura¹, Hidetoshi NISHIYAMA², Mitsuo Suga² and Chikara SATOU³*

Protein complexes in cells and tissues play critical roles in various physiological functions, including embryogenesis and signal processing. To observe the dynamics of protein complexes, high resolution and high throughput electron microscopy (EM) in aqueous solution is required. However, standard EM requires the sample to be in a vacuum. With ASEM, an inverted scanning electron microscope (SEM) observes the wet sample from beneath an open dish while an optical microscope (OM) observes it from above. The disposable dish with a silicon nitride (SiN) film window can hold a few milliliters of culture medium, allowing various types of cells to be cultured in a stable environment. This system was used for the development of *in situ* correlative OM/SEM immuno-microscopy in liquid. We observed a dynamic string-like gathering of STIM1 on the endoplasmic reticulum in Jurkat T cells in response to Ca²⁺ store depletion. We have also observed filamentous-actin (F-actin) and tubulin in the growth cones of primary-culture neurons as well as in synapses. We monitored *in-situ* electrochemical reactions in electrolytes, and melting and solidification of solder using ASEM.

Keywords: Correlative Light and Electron Microscopy (CLEM), microtubule, STIM 1, immuno-electron microscopy, electrochemistry

1 はじめに

多くの物理現象や化学反応が水中で起こり、我々の遠 い祖先は海で生まれた。そのため、水中を高分解能で観 察することは物性、生物研究の双方に重要である。我々の 体を例にとれば、タンパク質は生体機能を支える大切な要 素であり、細胞内をダイナミックに移動するものが多い。イ オンチャネル TRPV2 は通常細胞内膜に控えており、刺激 により数秒以内に細胞表面に表れ機能を果たす^[1]。このよ うな素早く移動するタンパク質は、近年数多く見つかって きており、他のタンパク質と会合・離散しながら生理機能 を果たす。会合したタンパク質複合体の多くは、さらに直 接、間接に細胞骨格と結合して細胞内で局在する。このよ うな構成要素の多い複合体の挙動と機能を解明するために は、迅速な試料作製・高分解能観察法が求められている。 いわゆる高スループットな電子顕微鏡観察法である。しか し従来の電顕法では、サンプルを真空で観るため、手間の かかる前処理が必要であった。

我々の開発した大気圧走査電子顕微鏡(ASEM: Atmospheric Scanning Electron Microscope) は、 金 粒子や蛍光で標識した細胞を前処理することなく水中で

Original manuscript received August 5, 2013, Revisions received January 9, 2015, Accepted January 27, 2015

 ¹ 産業技術総合研究所 バイオメディカル研究部門 〒 305-8568 つくば市梅園 1-1-1 中央第 2、2 日本電子(株) 〒 196-8558 昭 島市武蔵野 3-1-2、3 産業技術総合研究所 バイオメディカル研究部門 〒 305-8566 つくば市東 1-1-1 中央第 6&2
1. Biomedical Research Institute, AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Japan, 2. Advanced Technology Division, JEOL Ltd. 3-1-2 Musashino, Akishima 196-8558, Japan, 3. Biomedical Research Institute, AIST Tsukuba Central 6 and 2, 1-1-1 Higashi, Tsukuba 305-8566, Japan * E-mail: ti-sato@aist.go.jp

そのまま観察する(図1)。高スループットな高分解能観察 を実現すると同時に、重金属ラベル抗体でターゲット分 子を標識する免疫電顕法にも優れている。さらに、光顕 と電顕で相関観察が可能な光・電子相関顕微鏡(CLEM: Correlative Light and Electron Microscopy)である。水 の中を直接見る迅速性と高分解能は、さまざまな医療診断 を可能にすると期待される。このような ASEM はバイオ研 究のために開発されたが、物性分野やナノ分野でも気体・ 液体中での観察へのニーズは大きく、さまざまに応用が広 がりつつある。

2 気体・液体用の従来型電顕とASEMシステムの概要 2.1 従来の電顕法とその限界

従来、細胞内を観察するためには主に透過電顕 TEM が用いられ、さまざまな小器官が高分解能で解明されてき た。しかし、電顕では電子線を散乱させないように鏡筒内 を真空にする必要がある。そのため試料は一般に真空に 耐えるように、数時間~数日間かかる複雑な処理を施され る。100 %有機溶媒による脱水・樹脂包埋等を伴うことが 多いため、脱水処理に弱いタンパク質等の試料では構造変 化の可能性があり、さらに抗体による標識性(抗原性)に 問題を生じることもある。液体・気体中の試料をそのまま 高分解能で電顕観察したいという要求から、サンプルを非 真空環境で観察できる電子顕微鏡の開発が始まった。

2.2 環境制御型SEM

ピンホール状の電子線光路の絞りによる差動排気機構 の開発とGSED (gaseous electron detector) 技術の組み 合わせにより、SEM の試料室内を低密度の空気に保ち観 察する環境制御型 SEM (Environmental SEM: ESEM) が 1979 年に Danilatos 等によって開発された^[2]。1/100 大気圧程度の薄い空気での観察であるため、観察中に試 料から水分が蒸発する。そのため、試料が乾燥する前に 観察しなければならないという課題がある(図2左)。また、 これらの課題を解決する方法として、通常、試料を5℃程 度の低温に保ち、水の蒸発スピードを抑える等の方法が用 いられている。

2.3 環境カプセルの発展とその限界

高い大気圧下で安定した水環境を実現したいという願望 から、電子線透過窓をもつ環境カプセル (Environmental capsule)が TEM・SEM 用に開発された。実は、最初の カプセル開発は電顕発明の直後である^[3]。初期のカプセル 窓には、カーボンやコロジオンの薄膜が使用された。しか し、これらの環境カプセルがそれほど普及しなかった理 由には、膜の弱さがあったと思われる。不均一な場所から 万一破れると、電顕カラム内を汚してしまうかもしれない。 しかし、近年、これらの膜が半導体微細加工のために開 発された強靭な窒化シリコン(SiN) 薄膜^[4] 等へと変わり、 安定性が増したことで環境カプセルは飛躍的な発展を始 めた^[5]。しかし、内部は数十 山 以下の小さな閉鎖系また は準閉鎖系である(図2左)。生体から細胞を一部取り出 す初代培養、酸素要求性が高い神経細胞等の培養は特に 困難であり、長期培養や外部からの試薬投与も難しい。 SEM 用の環境カプセルは1枚窓を上に有するだけなので、 上下に窓がある TEM 用よりもシンプルである。しかし、中 の細胞や組織は重力により底に沈みやすい。何よりも、こ の小さな容器内では組織の断面を膜に接することも免疫電 顕法における抗体標識や洗い操作も容易ではないと思わ れる。

図1 ASEM の原理

(A) 倒立型 SEM に対向して光学顕微鏡を配置し、両者の間に、電子線透過薄膜を底に張った ASEM ディッシュをセットする。
(B) このディッシュは取り外して 培養器内で培養が可能である。原子 400 個厚の SiN 薄膜は、半導体製造工程から生まれたもので真空を支える強度をもつ。電子線は薄膜を透して液中の細胞を照射し、反射電子は薄膜を通って円盤型の BEI 検出器で検出される。
(C) ASEM ディッシュ。中央底に四角いシリコンチップが埋め込まれている。下はディッシュ底から見たチップの拡大像で、中央はエッチングにより凹んでおり SiN 薄膜が張られている。[11] より改変し転載。

3 SEMを倒立したASEMの開発

これらの課題の克服のために、我々は ASEM を開発 した (図 1)^[6]。強靭な 100 nm 厚の窒化シリコン (SiN) 薄膜(0.25 mm×0.25 mm)をディッシュ底に配置し、 膜上の試料を倒立走査電顕を使って下から観察する。 ここで ASEM という名称は、電子顕微鏡開発の歴史に 何度も登場しているので、説明を加えたい。最初は、 Danilatos が環境制御型(低真空) SEM を Atmospheric SEM (ASEM) と呼んだが^[2]、やがてその名称が ESEM に変わった。次に、GreenとKino^[7]が通常型SEM鏡 筒下部の電子ビーム放出側先端に薄膜をつけた顕微鏡に ASEM という言葉を使い、さらに真空を隔てる環境カプセ ルを Ackerley 等^[5]が ASEM と呼んだという経緯である。 我々の顕微鏡は、電子顕微鏡を逆立ちさせ、カプセル内で はない開放大気下または水中のサンプルを観察できること が特徴なので大気圧電顕の名にふさわしく、この名前を4 度目の正直で皆が使ってくれることを祈って ASEM と名付 けた。そのため、我々の ASEM は Danilatos 方式とは全 く異なり、むしろ膜で真空を隔てる点では環境カプセル等 に近い。

我々のASEMの工夫である取り外し可能な35 mm径 の ASEM ディッシュは、CO2 インキュベーター内で、気体 構成や湿度を生体内に近づけた培養を可能にした。さら に、このディッシュ形状により、培養細胞に対する洗いや ラベル等これまでに開発された光顕手技をそのまま適用で きる。しかも、光顕と同じく水中観察が可能なため、試料 作製の手間は少なく光顕とほとんど同じである。実際の観 察手順は以下の通りである。細胞は ASEM ディッシュ上に 蒔かれ、インキュベーター内で培養される。数時間から数 日の培養後、ディッシュを ASEM 試料ステージ上に O リン グで固定して、その下の倒立 SEM 鏡筒内部を1分程度か けて真空排気する。最初は、より広視野を低倍率で探れる

ように、サンプル上部に配置した光顕で培養細胞の変化を 観察する。目的とする細胞変化が起こった瞬間に化学固定 し、10 mg/ml グルコース溶液中で、下から SiN 薄膜越し に電子ビームスキャンにより目的視野を高倍率観察する(図 1A、B)。また、光顕では、構成タンパク質相互を区別す るために、それぞれを異なる蛍光色で標識して光顕で局在 を解析できる。光・電子相関観察を行う場合、抗原の標 識には、蛍光と金がついた FluoroNanogold^[8] や quantum dots^[9]も活用できる。

3.1 ASEMの構成要素

図2に ASEM 開発のシナリオを示した。ASEM を構築 する技術要素は SiN 膜とディッシュおよび SEM・光顕であ る。SiN 膜は強靭である。我々は半導体製造工程を最大 限利用して、山形県工業技術センターの渡部善幸等の協力 も得て、わずか 15 nm の厚み (Si もしくは N 原子おおよそ 100 個分) しかない SiN 薄膜窓の製作に成功した。工作 精度を上げるため CVD プロセスとウェットエッチングを採 用し、二気圧の圧力差でも壊れないことを確認した。その 上下に光顕と SEM をデザインした (図 2)。また、薄膜は、 酸素要求性の高い神経細胞が培養できるようにディッシュ の底面に組み込む開放構造とした。さらに、ディッシュを、 インキュベーター内での培養のために取り外し可能とし、 プラスチック素材の使い捨てにすることでハイスループット な観察を可能にした。

3.2 ASEMディッシュ (薄膜ディッシュ)の開発:電子 線透過膜の作製と耐久性および分解能

電子線の一部は薄膜で散乱される。そのため、ASEM の分解能決定要素の一つとして、電子線透過膜の品質、 特に厚さと平坦さが挙げられる。膜を薄くすると、電子線 散乱から理論的に予想されるように、分解能は徐々に向上 する。特に電子線の浸透力が弱い低加速電圧においてこ の傾向は顕著である。しかし、商業機では膜破壊の可能

ASEM 開発のシナリオ

図2 ASEMの開発シナリオ 開放空間下で、水中のサンプルを SEM で観察し、臨床診断や物性現 象の開発への応用を可能にすること が目標である。装置の基本開発は、 ①倒立型 SEM を開発する。さらに、 ②その上に薄膜を dish に組み込ん だ使い捨てサンプルホルダーとして 開発する。③光顕を dish 上に組み 合わせ、電顕と交互観察を可能に する。図は、[6]より改変し転載。

性を極力低減し、かつ 8 nm の分解能を維持するために、 100 nm 厚を採用している。さらに、半導体製造技術を駆 使して、8 枚窓チップの開発に成功し、それを組み込むこ とで観察効率が高いディッシュを開発した。

3.3 ASEMの機構

倒立させた SEM の鏡筒先端を SiN 膜でシールすること で、大気と真空を隔離して倒立型走査電子顕微鏡は機能す る。薄膜はディッシュ中央の底面に組み込み加工してあり、 試料は薄膜上であらかじめ培養されるか、または観察時に 膜上に置かれる。ディッシュを側面の O リングと底面のディ スク状ゴムシートで2重にステージ上にシールした後、排気 は数分で完了する。電子線は下部より薄膜を透過して試料 を照射し、その一部は反射電子となってはね返る。鏡筒の 出口にはディスク型の反射電子検出器を設置した。反射電 子は膜を通過して、この検出器でスキャン位置ごとに定量さ れて、像へと変換される。試料の上部には光学顕微鏡も搭 載しており、両顕微鏡での同視野交互観察が可能である。 その魅力は、2 ml もの豊富な液体下の物体が見えることで あるが、万一 SiN 膜が破れた時の防御システムは必須であ

あるが、方一 SiN 膜が破れた時の防御システムは必須であ る。SiN 膜は強靭であるが、誤って鋭いチップ等で破る場 合が考えられるからである。

3.4 膜破壊への対応

膜が破れた際には、以下に述べる3段階の防御機構が 働く。膜下のセンサーが真空度の低下を察知すると、真下 のシャッターが閉まり、シャッター上のコンテナが液体を受 ける。同時にエアリークバルブが働き、膜下も大気圧にす ることで新たな流れを止める。さらに、シャッターが閉まる 前に通過した液体は、鏡筒内にインナーパイプの中ほどに ある電子線を通す微小孔で止まり、電子銃を汚さない。こ のような機構により鏡筒内をクリーニングすることなく、部 品の交換のみにより ASEM を復旧できる^[10]。

4 ASEMの細胞生物学への応用

ASEM ディッシュ上で培養された細胞は、光学顕微鏡 で観察しながら外部操作が可能であり、固定・染色後に走 査電子顕微鏡 (SEM) で観察する。ASEM の分解能は 8 nm である。細胞小器官や細胞骨格を中心に以下に観察し た^[11]。これまでの環境カプセルでは容易ではなかった免疫 ラベルを実現し、神経細胞初代培養に適用した。

4.1 細胞骨格のASEM観察

細胞骨格は細胞の形を決定するとともに、分子局在の足 場であり、細胞内での物質輸送レールでもある。微小管は チューブリン重合により形成され、細胞分裂、鞭毛運動、 神経回路形成等に重要な役割を果たす。図3は、腎線維 芽株細胞 COS7 を化学固定し、Triton X-100 による膜透 過処理後に、抗α-チューブリン抗体で一次標識を行って ^[11]、Alexa Fluor 488 Nanogold -Fab'抗体^[8]によって二 次標識し金増感を行った^[12]。これらの一連の操作はディッ シュの液交換で済み、2-3 時間ですべての作業が終わる。 ASEM では、微小管は主に細胞中心から辺縁に向かって 走る白い線に見える(図3A)。拡大すると、約20 nm の金 粒子の連なりが正体である(図3B)。バックグラウンドは極 めて低い。もちろんラベリングは抗体に限らない。アクチン フィラメント(F-actin)は、細胞運動やシナプス形成・可 塑性等に重要な役割を果たすことが知られる。図3CとD は、Hela 細胞の F-actin を茸ファロイジン - 金で標識したと ころ、F-actin は細胞質や細胞外縁に束状に分布した。主 に、Stress fiber かと思われる。

4.2 ASEMはどの位の厚さまで見えているか

ASEM 観察を加速電圧 30 kV で行った場合、薄膜から どの程度の深さまで観察できるのであろうか? 図 3 と同様 に微小管を標識し、共焦点蛍光顕微鏡で比較観察した。 図 4B の ASEM 像における突起 (矢頭) や球状の突起 (矢 印) は、A の共焦点像では薄膜底面像 (最上段) には存 在しなかった。A の下図では観察されるため、これらは薄 膜から浮いた構造であることがわかり、ASEM の観察でき る深さは 2-3 µm と推定される^{[11][13]}。この値は、加速電圧 10 kV では 1 µm 程度まで浅くなる^[13]。培養神経細胞のシ ナプスや神経突起は、一般にこれらの範囲内にあるため、

F- アクチン

図3 微小管・F-アクチンの免疫 ASEM (A) COS7 細胞の a - チューブリンを蛍光・金 (FluoroNanogold) 標識した水中免疫電顕像。

- (B) 高倍像では一本一本の微小管が観察される。
- (C) Hela 細胞の F-アクチンをファロイジン 蛍光金で標識。

(D) 拡大像。自家蛍光のない低バックグラウンドでの観察が可能になった。[11]より改変し転載。

ASEM で十分観察可能と考えられる。

4.3 電子軌道シミュレーションによる観察できる深さ

ビーム電子の軌道を、モンテカルロ法によって確率に基 づきシミュレートした。20 kV から 30 kV と加速電圧が上 昇するのに伴って、電子線照射深度は深くなる (図 5)。そ のため、観察できる深さも大きくなると考えられる。これら の結果は、図 4 ともよく一致する。実際に、10 kV では観 察できる深さが約 1 µm であるが、30 kV では 2 ~ 3 µm まで深くなる^[13]。

4.4 初代培養神経細胞のシナプス形成における細胞 骨格の再構築

シナプスは、神経ネットワーク形成の基本単位である。 そのサイズは主に 50-500 nm と小さく、構成する軸索や樹 状突起も微細なものが多い。その観察には、光顕よりも電 顕の分解能が適している。しかし、透過電顕で培養細胞の シナプス結合を数えるには、樹脂包埋後に培養面と水平に ニューロンを薄切するという実際には困難な作業が通常必 要である。これに対し、ASEM ではシナプスを包埋や薄切 なしに観察可能で、50 nm の小さなスパインも観察できた。

図 6A-D では、シナプス形成に向けて伸長する神経軸索

先端(成長円錐)を観察した。ポリ-L-リジンコートした ASEM ディッシュ上で、マウス海馬神経細胞(錐体細胞) を4日間初代培養し^[11]、固定・細胞膜透過処理後に、F-アクチンを標識し、白枠の成長円錐を ASEM で観察した。 先端のラメリポディア(葉状仮足)では、微細な F-アクチン がまるで自転車のスポークのように発達して見える (図 6C、 D)。スポーク構造の中心側には、Homer 1c が共在する (図 6B 黄緑)。このことは、Homer が Ca シグナル情報を受け 取り、アクチン重合を制御することで成長円錐の運動に介 在するとの考えとよく一致する。培養14日目にシナプスが形 成されると、スパインに局在する Homer 1c (図 6F、緑) を目印に、シナプス部位を特定できる(図 6G、H)。チュー ブリンは樹状突起の背骨として存在して、シナプス部位には ほとんど存在しなかった(図 6G)。また、これら樹状突起 内の微小管は斜め(らせん状)に走行することが新たに判 明した (図 6I、J)。樹状突起はらせん状に分布し空間を最 大限活用することが知られ、その構造基盤かと推定される。 4.5 シグナル伝達分子のダイナミックな再配置; CRACイオンチャンネルのCa²⁺感受機構の可視化

小胞体の膜タンパク質である Ca²⁺ センサー STIM1 は、

図4 ASEM による観察深度 COS7 細胞のa - チューブリンを図 3A と同様に金・蛍光標識し、観察 できる深さを Confocal 蛍光顕微鏡 との比較により測定した。(A) 共 焦点蛍光顕微鏡像。最上段は SiN 膜面。最下段は膜面より 1.32 µm 上。(B-E) ASEM 像。 2-3 µm が ASEM が観察できる深さと推定さ れる^{[11][13]}。[11] より改変し転載。

図5 電子軌道シミュレーション ASEM での電子イメージングを、モ ンテカルロ法によって電子軌道シミュ レーションした。20 kV と 30 kV に 関して、試料をカーボン層と仮定して 行った。図4の結果を支持する。[6] より改変し転載。

細胞膜 CRAC イオンチャネルのセンサーである。STIM1 は小胞体内部の Ca²⁺ 濃度をモニターしており、小胞体内 部のCa²⁺欠乏を感知しCRACを開けると考えられている。 Ca²⁺を枯渇させて^[11]、STIM1の小胞体膜上での分布を 観察したのが図7である。小胞体マーカー PDI を蛍光標 識して相関観察したところ (図 7A)、小胞体が Ca²⁺ を貯蔵 している定常状態では、STIM1を表す金は小胞体全体に 分散していた(図7B、C)。ひとたび Ca²⁺ 枯渇が起こると、

STIM1分子は細胞膜近くに斑点状に集合した(図7E-G)。その内部では、分子は一次元的につながって凝集する 様子が初めて撮影された(図7G)。STIM1分子は非対称 なので、分子が前後に連結してゆくことが示唆される。こ の STIM1 重合体がさらに細胞膜の Orai と結合し、密集 した活性型イオンチャネル超複合体を形成すると考えられ る。この他に、 癌の転移に重要な CD44 糖鎖リセプターの 細胞膜上での位置変化を捉えることにも成功している^[14]。

図6初代培養神経細胞の成長円錐とシナプ ス形成

ポリ-L-リジンコートした ASEM ディッシュ上で、 Homerlc-EGFP トランスジュニックマウスの海馬 錐体細胞を初代培養した。(A)4日後の成長円 錐の位相差光顕像。 F-アクチンを赤と金で標識 後、(B) 蛍光像。(C、D) ASEM 像。成長円 錐の ラメリポディア (葉状仮足) には、自転車の スポーク状に F-アクチンが観察された。(E) 培 養14日後の位相差像。シナプスが形成されてい る。(F) 蛍光像。(G-I) ASEM 像。(G) シナ プスのチューブリン。(H)さらに重金属で細胞 の輪郭を染色。(I、J)樹状突起内の微小管は、 長軸に対して斜め(らせん状)に走行している。 シナプスや成長円錐全体の高分解能での透過撮 影が可能になった。[11]より改変し転載。

図7 小胞体 (ER) 内 Ca²⁺ 減少による STIM1 の集合

CRAC チャネルの Ca²⁺ センサーである STIM1 サブユニットは細胞内の小胞体に分布するが (A-C)、Ca²⁺ 枯渇を感知し細胞膜近く puncta に 斑点状に集合する (D-G)。カラーは蛍光、白黒像は ASEM 像で、白枠をそれぞれ拡大撮影したのが右側の図である。STIM1 集合の最拡大 像では金粒子が線状に繋がっていることが発見され、非対称分子が一次元的に結合していることが推測される (G)。STIM1 は、さらに細胞膜 の Orail とイオンチャネル超複合体を形成すると考えられる。(A、D) ER マーカーである PDI を蛍光ラベルした。小胞体の分布を表す。以上、 COS7発現系での結果を示したが、免疫系 T 細胞の内在性 STIM1 でも同様に分子集合が観察され普遍的と思われる。[11]より改変し転載。

5 臨床応用に向けて

5.1 臨床診断機としての可能性

電顕による水中での直接観察は長い前処理が要らない ため、臨床現場への応用が期待される。診断の指標とな る特徴を可視化するために、以下の2例では重金属染色液 というソフト面での開発を行い、診断法への緒に就いた。 さらに、観察エリアを広くするために8枚窓ディッシュを開 発した。

5.1.1 感染細菌の同定

細菌の感染症は、生命をおびやかす最も深刻な要因の 一つである。細菌の種類によって治療の方針は異なるた め、培養等の時間がかかるステップを必要としない種の同 定法が強く求められている。近年、肺炎等で特に注目を集 めるマイコプラズマは、細胞体積が大腸菌のおよそ1/25 し かない。大きなウィルス程度のサイズである。近年の大流 行では、抗生物質耐性菌が9割以上を占め、特に早期診 断が求められている。しかし、診断は、その小ささも相まっ て早期はもとより病気の進行ステージに関わらず難しい。 魚のエラから発見された Mycoplasma mobile 種をモデル として ASEM で観察した。細胞膜に透過処理をした後、 ウラン・鉛を中心とした重金属液で染色すると、尖った先 端には Cap 構造、球状の細胞後方部には核酸、中間部分 には変化に富んだ構造が見られた (図 8A)^[15]。これらの 構造は特徴的であり、診断に極めて有力な根拠となりそう である。また、移動を支える足複合体を金抗体で標識する と、細胞表面に腹帯状に分布が認められた(図8B下)た め、免疫ラベルも診断に使えるかもしれない。この他、桿 菌の詳細な観察にも成功している^[16]。これらの結果は、 ASEM が感染症の診断を早める可能性をもつことを示して いる。

5.1.2 癌転移の同定;術中迅速診断への応用

手術中の迅速癌診断における最も重要な指標は核のサイ ズである。一般に、組織を凍結後に3μm厚程度に薄切し、 ヘマトキシン・エオジンで染色して、光顕で観察する。主 に核のサイズから診断し切除範囲を決定している。しかし、 クライオ薄切は容易ではなく、全過程に最短でも15-30分 必要である。術中で時間に迫られるため、観察箇所が限 られることも大きな問題であった。まず、ASEMに使える 核の染色法を試行錯誤によって開発した。培養した細胞を 1%パラフォルムアルデヒド(PFA)固定後に10倍希釈 Ti (platinum)-Blue液で染色すると核が高コントラストに染 色されることを見い出した^[6]。そのため、ASEM dish の薄 膜上に Ti-Blueで染色した組織を置けば、表面 2-3 μmの 核を高分解能観察できるはずである。実際に金魚脳組織 を固定/染色して、組織の切断面を観察すると核が白く際 立って見えた(図9)。この方法ならば凍結薄切が要らない

図8 マイ ASEM 像 (A) 重金属 合体 Gli345 重金属で細 図であり、 # ズマは一般 細胞内のこ

図 8 マイコプラズマ Mycoplasma mobile の ASEM 像

(A) 重金属染色。下は拡大図。(B) 足タンパク複 合体 Gli349 の水中免疫電顕像。金標識の後で、 重金属で細胞の輪郭をカウンター染色。上は模式 図であり、細胞は矢印方向に移動する。マイコブラ ズマは一般に大腸菌の1/25 の体積しかない。本 細胞内のこのような像は、初めて観察された。[15] より改変し転載。

Ti-Blue は核を選択的に染色

図 9 組織ブロック切断面の細胞核 組織を Ti-Blue で染色するだけで、表 面近傍の核が水中で明確に観察できる。 神経突起等も弱く染色された。組織ブ ロックのままで核が観察できるように なった。[6]より改変し転載。 ため、術中診断を飛躍的に迅速・容易にする可能性があ る。より多くの箇所を検鏡することにより、診断精度向上 も期待される。

6 エネルギー・素材分野への応用

6.1 電気化学反応;バッテリー開発への応用

電解液中での電気化学反応を *in-situ* で高分解能観察す ることは、バッテリーや電解液の開発に重要である。その ために、SiN 薄膜上に 100 μm 離れた二つの電極を備える 電気化学 ASEM ディッシュを開発した (図 10A、B)^[17]。 電極は、SiN 薄膜上に 30 nm 厚のチタンと 100 nm 厚の 金をスパッタリング法で積層し、ホトリソグラフィとウェット エッチングで加工した。

飽和 NaCl 溶液中のカソード電極近傍を倍率 5,000、1 フレーム 0.15 秒、4 回積算の条件で ASEM 撮影した。撮 影直後に、アノードとカソード電極の間に電圧を印加した。 電圧印加 2 秒後(図 10C)電圧印加 4 秒後(図 10D)の ASEM 像を示す。カソード電極からアノード電極側に向かっ て樹枝状構造が成長していく様子がリアルタイムに観察で きた。観察後に試料全体を乾燥させて、樹枝状の析出物 を SEM-EDS (Scanning Electron Microscope - Energy Dispersive Spectrometry)で分析したところ、金であった。

このように、ASEM を用いれば、電気化学反応による 金属の堆積をリアルタイム観察できる。これまで、SEM を 用いた電解液中での電気化学現象のリアルタイム観察は、 真空中で蒸気圧が低いイオン液体等の電解液に限られてい た。真空中での維持が困難な一般的な電解液を用いた観

図 10 電気化学用 ASEM ディッシュ (A、B) と電解液中での 電気化学反応の観察 (C、D)

Зs

SiN 薄膜の上に 100 µm 間隔で両電極を形成した (A、B)。2.1 V 電 圧を印加 2 秒後にカソード付近を ASEM 観察 (C)、4 秒後 (D)。カ ソードからアノード方向に樹枝状の析出物が成長する。水溶液電解質 中での観察が可能になった。[17]より改変し転載。 察は、本例が最初と思われる。

6.2 マイクロワイヤリングへの応用、ハンダの融解と凝固

温度により変化する現象を溶液中・気体中において観察 するために、温度可変 ASEM ディッシュを開発した^[17]。 標準ディッシュと類似構成であるが、温度を上昇・制御で きるようにヒーターと温度計を設置し、温度上昇に耐えら れるように本体をチタン製とした点が異なる(図 11A)。 SiN 薄膜はハンダ(Sn: 42 wt%、Bi: 58 wt%)の溶ける高 温に耐える。図 11Bの各温度において、融解・凝固する 際の形態変化を観察した(図 11C-D)。温度が 145 ℃では ハンダが融解して ASEM 像のコントラストは一様になり、 その後 130 ℃に冷却することにより金属が偏析する(図 11C)。再度温度を 150 ℃まで上昇させた後で 115 ℃に急 速冷却すると、偏析のモフォロジーが変化した(図 11D)。 冷却条件により偏析が異なった。ハンダによる回路形成で は松脂等の微量の揮発成分が重要であり、その研究・開 発に ASEM は貢献すると思われる。

7 将来への課題

ASEM による水中観察の迅速さは、多条件での実験を 可能にした。また、水中での光・電子相関観察が一つの装 置内でできることは、ASEM の大きな特徴である。

新開発のASEM ディッシュにより開放大気下での観察 が可能になったため、気体を発生させる電気化学反応も含 め、さまざまなダイナミックな現象を二つの顕微鏡で観察で きるようになった。例えば、電気化学反応であれば、発生 する泡は上に登るため倒立電顕では捉え難いが光顕ならば

図 11 温度可変 ASEM ディッシュ (A)、温度変化 (B) とハ ンダの ASEM 像 (C、D)

ディッシュにヒーターと温度計を配置した(A)。融解したハンダは温 度低下により凝固(C、D)。偏析により明暗コントラストがつくが、形 態は冷却条件により異なる。松ヤニ等の揮発成分の存在下でも、観 察が可能になった。[17]より改変し転載。

観察できる。同時に、倒立 SEM は下から観察するため、 気体を発生する現象でも泡の影響を受け難い。さらに、 本顕微鏡は細胞研究に新たに二つの利点をもたらした。一 つは、薄膜上では培養が難しかったさまざまな細胞を培養 できるようになったこと^[18]、もう一つは標識や洗いの効率 が上がったことである。ASEM ディッシュでは、環境カプ セルの小さな体積とは異なり、3 mlの大きな培養体積で CO2 インキュベーター内で細胞培養ができる。そのため、 蒸発の影響を小さくでき、培養液の塩濃度を一定に保ちや すく、広い液面でのガス交換により酸素・二酸化炭素濃度 が安定である。SiN 膜は、従来のガラス用に開発された表 面コート剤により細胞接着が向上する^[11]。それは、膜表面 が製造過程で酸化されて恐らく SiOx となっており、ガラス 様の性質をもつからと思われる。標識・洗浄の容易さは、 本免疫電顕法をほぼ光顕並に高スループットなものにし た。その結果、多検体解析やスクリーニングが容易となり、 1日に40ディッシュを観察した例もある。試料の調整はす べて水溶液中で行われるため、抗原性の保存は極めて良 い。100種類ほどの細胞標識用の抗体を試したところ、 100 %の抗体で ASEM 観察することができた。使われた 抗体の半数はマウスモノクローナル抗体であり、市販の抗 体が広く使えることが期待される。重金属による染め分け を追加することで、特定の細胞構造を強調することができ る。酢酸ウラン、リンタングステンは主にタンパク質・核酸を、 四酸化オスミウムは油滴や膜構造を強調する⁶⁶。ASEMの 加速電圧を変えることで、目的物の薄膜からの距離を推定 することができる。この辺りは、機能的には共焦点光顕と 少し似ているが、原理は異なる。

高スループットな ASEM は、多様な試料を短期間に高 分解能で観察する。ASEM の操作は、電顕としては極め て習得が簡単である。常に薄膜が同じ高さにセットされる ため、フォーカス位置が同じ場所にくることもその一因と なっている。本結果以外にも、ASEM は、光顕分解能以 下のタンパク質微結晶を結晶化溶液中で無染色で観察でき る^[19]。目標の一つである臨床診断への応用は始まったば かりである。核のサイズを ASEM で測定することにより癌 術中診断を迅速化することが期待される。しかし、そのた めには、従来の光顕像と同じように核と細胞質を色分けす ることが求められるため、画像処理による自動認識・着色 ソフト開発が必要である。また、感染細菌の迅速な診断と いう面での活躍も期待される[15][17]。そのためには、肺炎 球菌や桿菌・院内感染 MRSA・ウィルス等を中心に、総合 的な診断に向けて染色法を含めた観察プロトコール等のソ フト面での整備が強く求められる。ASEM は創薬、食品 化学、ポリマー化学、セメント等にも応用できる。さらに、

材料科学^[16]、ナノ科学等さまざまな物理・物性研究にも広 く適用可能である。

謝辞

ASEM 製作では日本電子テクニクス(株)の露木誠氏、 佐藤猛氏、石森能夫氏、小泉充氏、小川康司氏に、薄膜 の製作では、山形県工業技術センターの渡部善幸博士と日 本電子の小入羽祐治氏の御協力に感謝いたします。この研 究の一部は、産業技術総合研究所と日本電子のマッチング ファンド、科研費特定領域「生体超分子」、新学術領域「構 造細胞生物学」、CREST の支援を受けて行われました。

参考文献

- M. Nagasawa, Y. Nakagawa, S. Tanaka and I. Kojima: Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages, *J. Cell. Physiol.*, 210 (3), 692-702 (2007).
- [2] G. D. Danilatos: An atmospheric scanning electron microscope (ASEM), *Scanning*, 3 (3), 215-217 (1980).
- [3] I.M. Abrams and J.W. McBain: A closed cell for electron microscopy, J. Appl. Phys., 15 (8), 607-609 (1944).
- [4] T. Tomie, H. Shimizu, T. Majima, M. Yamada, T. Kanayama, H. Kondo, M. Yano and M. Ono: Threedimensional readout of flash X-ray images of living sperm in water by atomic-force microscopy, *Science*, 252 (5006), 691-693 (1991).
- [5] C. Ackerley, C. Nielsen and C. Hawkins: Experiences with wet capsule imaging exploring the potential for live cell imaging, *Microsc. Microanal.*, 12 (Supp. S02), 428-429 (2006).
- [6] H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura and C. Sato: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film, *J. Struct. Biol.*, 169 (3), 438-449 (2010).
- [7] E. D. Green and G. S. Kino: Atmospheric scanning electron microscopy using silicon nitride thin film windows, J. Vac. Sci. Technol. B, 9 (3), 1557-1558 (1991).
- [8] R. D. Powell, C. M. Halsey and J. F. Hainfeld: Combined fluorescent and gold immunoprobes: reagents and methods for correlative light and electron microscopy, *Microsc. Res. Techniq.*, 42 (1), 2-12 (1998).
- [9] B. N. Giepmans, T. J. Deerinck, B. L. Smarr, Y. Z. Jones and M.H. Ellisman: Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots, *Nat. Methods*, 2 (10), 743-749 (2005).
- [10] H. Nishiyama, M. Koizumi, K. Ogawa, S. Kitamura, Y. Konyuba, Y. Watanabe, N. Ohbayashi, M. Fukuda, M. Suga and C. Sato: Atmospheric scanning electron microscope system with an open sample chamber: configuration and applications, *Ultramicroscopy*, 147, 86-97 (2014).
- [11] Y. Maruyama, T. Ebihara, H. Nishiyama, M. Suga and C. Sato: Immuno EM-OM correlative microscopy in solution by atmospheric scanning electron microscopy (ASEM), *J. Struct. Biol.*, 180 (2), 259-270 (2012).
- [12] R. D. Powell and J. F. Hainfeld: Silver- and gold-based autometallography of Nanogold, Gold and Silver Staining: *Techniques in Molecular Morphology* (G. W. Hacker, J. Gu, eds.), CRC Press, Boca Raton, FL, 29-46 (2002).

- [13] M. Suga, H. Nishiyama, T. Ebihara, T. Ogura and C. Sato: Atmospheric electron microscope: limits of observable depth, *Microsc. Microanal.*, 15 (Supp S2), 924-925 (2009).
- [14] T. Murai, Y. Maruyama, K. Mio, H. Nishiyama, M. Suga and C. Sato: Low cholesterol triggers membrane microdomaindependent CD44 shedding and suppresses tumor cell migration, J. Biol. Chem., 286 (3), 1999-2007 (2011).
- [15] C. Sato, S. Manaka, D. Nakane, H. Nishiyama, M. Suga, T. Nishizaka, M. Miyata and Y. Maruyama: Rapid imaging of mycoplasma in solution using atmospheric scanning electron microscopy (ASEM), *Biochem. Biophys. Res. Commun.*, 417 (4), 1213-1218 (2012).
- [16] T. Kinoshita, Y. Mori, K. Hirano, S. Sugimoto, K. Okuda, S. Matsumoto, T. Namiki, T. Ebihara, M. Kawata, H. Nishiyama, M. Sato, M. Suga, K. Higashiyama, K. Sonomoto, Y. Mizunoe, S. Nishihara and C. Sato: Immunoelectron microscopy of primary cell cultures from genetically modified animals in liquid by atmospheric scanning electron microscopy (ASEM), *Microsc. Microanal.*, 20 (2), 469-483 (2014).
- [17] M. Suga, H. Nishiyama, Y. Konyuba, S. Iwamatsu, Y. Watanabe, C. Yoshiura, T. Ueda and C. Sato: The atmospheric scanning electron microscope with open sample space observes dynamic phenomena in liquid or gas, *Ultramicroscopy*, 111 (12), 1650-1658 (2011).
- [18] K. Hirano, T. Kinoshita, T. Uemura, H. Motohashi, Y. Watanabe, T. Ebihara, H. Nishiyama, M.Sato, M. Suga, Y. Maruyama, N. M. Tsuji, M. Yamamoto, S. Nishihara and C. Sato: Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM, *Ultramicroscopy*, 143, 52-66 (2014).
- [19] Y. Maruyama, T. Ebihara, H. Nishiyama, Y. Konyuba, M. Senda, T. Numaga-Tomita, T. Senda, M. Suga and C. Sato: Direct observation of protein microcrystals in crystallization buffer by atmospheric scanning electron microscopy, *Int. J. Mol. Sci.*, 13 (8), 10553-10567 (2012).

執筆者略歴

小椋 俊彦 (おぐら としひこ)

1997年豊橋技術科学大学大学院工学研究 科博士課程システム情報工学専攻修了。1997 年(株)オムロンライフサイエンス研究所研究 員。2000年工業技術院電子技術総合研究所 (現:産総研)特別研究員。2003年産総研 脳神経情報研究部門研究員。現在産総研バイ オメディカル研究部門構造生理研究グループ主 任研究員、この論文では、装置の企画・開発 および構成を担当。

西山 英利(にしやま ひでとし)1992年東京工業大学応用物理学科修士

課程修了。1992年日立製作所中央研究所。 2005年日本電子(株)。2014年同 SEM 技術 開発部部長代理。この論文では、装置の企画・ 開発、および、バイオ・材料向けアプリケーショ ン開発を担当。

須賀 三雄 (すが みつお)

1989 年東北大学大学院理学研究科物理学 科修士課程修了。1989 年日立製作所中央研 究所。2000 年日本電子(株)。2013 年同開 発・基盤技術センター副センター長。2014 年 SEM 事業ユニット副ユニット長。2014 年に、 千葉大学大学院において工学博士を取得。こ の論文では、装置の企画・開発、および、材 料系向けアプリケーション開発を担当。

佐藤 主税 (さとう ちから)

1989 年東北大学大学院理学研究科博士課 程修了。理学博士。1989 年工業技術院電子 技術総合研究所(現:産総研)。2001 年に産 総研。現在、産総研バイオメディカル研究部 門構造生理研究グループ長。この論文では、 装置の企画・開発、および、バイオ向けアプ リケーション開発を担当。

査読者との議論 議論1 全体的な評価

コメント(一村 信吾:名古屋大学、多屋 秀人:株式会社J-Space) この論文は、半導体の超薄膜技術を活用して開発した大気圧電子 顕微鏡(ASEM)を、バイオ分野でニーズの高い水中観察法に向け てのシナリオの構築、要素技術の選択とその展開について論じられて おり、本誌シンセシオロジーの論文としての価値が認められます。

従来の電顕法では試料を真空中に保持することが不可欠であった が、この論文に示された ASEM による水中観察法が開発されたこと により、バイオ分野では細胞内での活動を迅速に高分解能での観察 が可能となり、今後、臨床医療への応用、さらには材料科学、ナノ 科学の分野への展開に繋がると期待されます。

議論2 全体構成について

コメント (一村 信吾)

Google scholar で検索すると、Atmospheric Scanning Electron Microscope (ASEM) という用語・概念が提示されたのは 1980 年 代に遡ることがわかります。今回の論文の主眼が① ASEM を開発し たことにあるのか、② ASEM を応用したことにあるのか (③あるい はその両方にあるのか) で、論文の書き方を大きく変えるべきと考え ます。

①であれば、従来の ASEM とどこが違っているか、その違いをだ すために、どのような新しい要素技術を既存技術の中に取り入れてシ ステム(装置)を構成したか、その着想に至った背景は何かなどを記 述いただくと、構成論的アプローチに係わる論文としての特徴が出て きます。基本的な特徴に関する幾つかの記述がすでにありますので、 ASEM 開発に関する歴史的な経緯を踏まえながらそれらを再構成し て、今回の開発の特徴を明確にしてください。

②であれば、単に観察例を列記するだけではなく、これまではど のような方法でどこまでわかっていたか(逆に言えば何が限界であっ たか)、それが ASEM 法の適用でどこまでわかってきたか(加えて、 従来法の限界を克服する技術要素として何を考え適用したか)、それ によって観察対象の本質に係わる理解がどこまで進んだかを意識して 記述いただくと構成論的アプローチに係わる論文としての特徴が出て きます。

回答(佐藤 主税)

今回の論文の主眼は③にあります。コメントに従いまして、①と② を併せた形の論文として下記のように再構成しました。

まず、電顕の開発史を踏まえながら1~3節を全く新たに再構成し

書き直しました。まず 2.1 ~ 2.3 章として水中観察電顕の開発史を加 えることにし、これまでの方法での限界を「2.1 従来の電顕法とその 限界」と「2.2 環境制御型 SEM」「2.3 環境カプセルによる水中観察 電顕法の発展と限界」で書きました。また 3 章の最初の段落で、新 たに ASEM の名前の由来と変遷についても書き加えました。要素技 術に関しましては、「3.1 ASEM の構成要素」で、図 2 ASEM 開発 シナリオを加えて新たに詳述しました。これらを踏まえて、さらにサ ンプルの本質に対する理解がどこまで進んだかを開発要素を新たに 加えました。

議論3 シナリオについて

コメント (一村 信吾)

ASEM に関する歴史的流れはかなり明確になりました。但し、"シ ナリオ、要素の選択、要素間の関係と統合の概略を、まとめて1枚の「シ ナリオの図」に描く"という点では、不足しています。今回経緯を示 されたこれまでの開発手法(環境制御型 SEM 法、環境カプセル法) の要素(特徴)と問題点を記述し、それからの取捨選択および新し い機能付加により今回の開発に至ったことが判る1枚の図をお願いし ます。

その際に、特徴である「SEM 鏡体の倒立」と「SiN 薄膜の活用」 が、どのような経緯から新しく付加すべき要素として選択されたかの 説明を、図に併せてさらに詳しく記述することが良いように思います。

コメント (多屋 秀人)

シナリオ図は、ASEMの要素を示したもので、この論文での骨子 となるシナリオとしては不十分です。この論文のタイトルが、「水中観 察法の開発」であれば、水中観察法を確立するに至る道筋・研究過 程を示すことが必要で、ASEMの開発はその内の一つかと思います。 この論文の目標である「水中観察法の確立」に向かって必要な要素 技術について、それらの解決すべき問題点等も含めて示してください。

回答(佐藤 主税)

御指摘に従い、図2を再構成しました。従来技術の問題点を示す とともに、「開放空間での水中観察」を実現するための研究開発の流 れを示しました。

議論4 タイトルと「はじめに」の関係

コメント (一村 信吾)

現在のタイトルは、「水中観察法の開発」です。このタイトルは、 後述にバイオ以外の応用例も示されているように、液中での反応現 象の解明に向けた内容の展開を期待させます。一方「はじめに」は明 らかにバイオ分野に限定した記述であり、「水中観察法」の意義、必 要性を指摘するものとは言えません。したがって、タイトルを残して「は じめに」の導入部を工夫する(「水中観察法」の意義、必要性を指摘 する)か、「はじめに」をそのままにしてタイトルを変えるか、検討の 上で整合性を図ることが必要です。

考察という章立てはこの論文では不要です。すべてが構成的アプ ローチに基づく考察で書かれていることが特徴のジャーナルの論文で す。

回答(佐藤 主税)

「はじめに」の導入部を工夫し、この論文全体を改定いたしました。

議論5 「ASEMを応用したこと」を主眼とする記述

コメント(一村 信吾)

現在記載されている例はバイオ関連を除くと二つで、電気化学反応 とマイクロワイヤリングです。この後者「ハンダの融解と凝固」は、タ イトルが「水中観察法の開発」である限り、展開例として適切と思え ません。(気相中での反応としか思えません。)タイトルとの関係で、 この応用例の採用(不採用)、他の応用例の追記を検討してください。

回答 (佐藤 主税)

ハンダによる回路形成では松脂等の微量の揮発成分が重要であ り、micro wiring は今後も発展が期待できる分野であるため、応 用の可能性を期待して本例を記載いたしました。御指摘を反映しまし て、「ハンダによる回路形成では松脂等の微量の揮発成分が重要で あり、その研究・開発に ASEM は貢献すると思われる。」の記述を この論文に加えさせていただきました。