Vol.3 No.4 2011
25/72
Research paper : Development of single-crystalline diamond wafers (A. Chayahara et al.)−266−Synthesiology - English edition Vol.3 No.4 (2011) [33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53]N. R. Parikh et al.: Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing, Appl. Phys. Lett., 61 (26), 3124-3126 (1992).Y. Tzeng et al.: Free-standing single-crystalline chemically vapor deposited diamond films, Appl. Phys. Lett., 63 (16), 2216-2218 (1993).M. Marchywka et al.: Low energy ion implantation and electrochemical separation of diamond films, Appl. Phys. Lett., 63 (25), 3521-3523 (1993).T. P. Humphreys et al.: Surface preparation of single crystal C(001) substrates for homoepitaxial diamond growth, Mat. Res. Soc. Symp. Proc., 339, 51-56 (1994).J. D. Hunn et al.: Fabrication of single-crystal diamond microcomponents, Appl. Phys. Lett., 65 (24), 3072-3074 (1994).J. D. Hunn et al.: The separation of thin single crystal films from bulk diamond by MeV implantation, Nucl. Instr. and Meth., B 99, 602-605 (1995).J. B. Posthill et al.: Method of fabricating a free-standing diamond single crystal using growth from the vapor phase, J. Appl. Phys., 79 (5), 2722-2727 (1996).R. Samlenski et al.: Liftoff-technique of single-crystal diamond plates: Study of the lattice damage of the implanted substrates and the crystalline quality of the homoepitaxial films by ion channelling, Diamond Related Mater., 6, 149-152 (1997).R. Locher et al.: Lift-off technique of homoepitaxial CVD diamond films by deep implantation and selective etching, Diamond Related Mater., 6, 654-657 (1997).R. Ramesham et al.: Synthetic single-crystal, homoepitaxially grown, CVD diamond capacitor, J. Mater. Sci. Mater. Electron., 8, 69-72 (1997).D. B. Rebuli et al.: Oxygen surface studies in ultra-thin diamond using a resonance reaction and transmission channeled Rutherford forward scattering, Nucl. Instr. and Meth., B158, 701-705 (1999).P. F. Lai et al.: Recovery of diamond after irradiation at high energy and annealing, Diamond Related Mater., 10, 82-86 (2001).P. Olivero et al.: Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond, Adv. Mater., 17, 2427-2430 (2005).J. O. Stoner Jr. and S. A. Miller: Isotopic 13C target foils 0.4–2.2 mg/cm2 by pyrolysis of methane, with alternative methods of production, Nucl. Instr. and Meth., A561, 24-37 (2006).M. W. Geis et al.: Large-area mosaic diamond films approaching single-crystal quality, Appl. Phys. Lett., 58 (22), 2485-2487 (1991).M. W. Geis et al.: Mosaic diamond substrates approaching single-crystal quality using cube-shaped diamond seeds, Diamond Related Mater., 4, 76-82 (1994).G. Janssen and L. J. Giling: “Mosaic” growth of diamond, Diamond Related Mater., 4, 1025-1031 (1995).T. J. Kistenmacher et al.: Assessing polar and azimuthal correlations for an oriented mosaic of (001) diamond crystallites on (001) silicon, Diamond Related Mater., 4, 1289-1295 (1995).J. B. Posthill et al.: Demonstration of a method to fabricate a large-area diamond single crystal, Thin Solid Films, 271, 39-49 (1995).J. J. Schermer et al.: Mosaic growth of diamond: A study of homoepitaxial flame deposition and etching of {001}-oriented diamond layers, J. Crystal Growth, 165, 387-401 (1996).C. Findeling-Dufour and A. Gicquel: Study for fabricating large area diamond single-crystal layers, Thin Solid Films, 308-309, 178-185 (1997).C. Findeling-Dufour, A. Gicquel and R. Chiron: Growth of large-crystal diamond layers: analysis of the junctions between adjacent diamonds, Diamond Related Mater., 7, 986-998 (1998).H. Yamada, A. Chayahara, Y. Mokuno et al.: Fabrication of 1 inch mosaic crystal diamond wafers, Appl. Phys. Express, 3, 051301 (2010).A. Plossl and G. Krauter: Wafer direct bonding: tailoring adhesion between brittle materials, Mater. Sci. Eng., R25, 1-88 (1999).A. Chayahara et al.: High-dose implantation of MeV carbon ion into silicon, Jpn. J. Appl. Phys., 31, 139-140 (1992).A. Chayahara et al.: Formation of crystalline SiC buried layer by high-dose implantation of MeV carbon ions at high temperature, Jpn. J. Appl. Phys., 32, L1286-L1288 (1993).M. Marchywka et al.: Low energy ion implantation and electrochemical separation of diamond film, Appl. Phys. Lett., 63, 3521-3523 (1993).H. Umezawa et al.: Characterization of Schottky barrier diodes on a 0.5-inch single-crystalline CVD diamond wafer, Diamond Related Mater., 19, 208-212 (2010).http://www.d-edp.jp/[54][55][56][57][58][59][60][61]AuthorsAkiyoshi ChayaharaCompleted the doctorate program at the Graduate School of Engineering, Hiroshima University in 1988. Doctor of Engineering. Joined the Government Industrial Research Institute, Osaka, Agency of Industrial Science and Technology, Ministry of International Trade and Industry in 1988. Engaged in research of ion beam application technology. Worked at the R&D Lab for Purity Control Material, AIST from 2001. Senior Researcher of the Diamond Research Center in 2003. Leader of the Diamond Wafer Team, Diamond Research Center in 2006. Deputy Director of the Diamond Research Laboratory in 2010. In this paper, was in charge of the overall integration and the nitrogen addition effect.Yoshiaki MokunoCompleted the two-year master’s course at the Graduate School of Engineering, Tohoku University in 1990. Joined the Government Industrial Research Institute, Osaka, Agency of Industrial Science and Technology, Ministry of International Trade and Industry in 1990. Engaged in the research of optical information processing technology and ion beam application technology. Obtained Doctor of Engineering from the Tohoku University in 1996. Senior Researcher of the R&D Lab for Purity Control Material, AIST in 2001. Senior Researcher of the Diamond Wafer Team, Diamond Research Center, AIST in 2003. Currently on dispatch to the Ministry of Economy, Trade and Industry from 2009. In this paper, worked on the repeated growth method and direct wafer technology.
元のページ