金属クラスター錯体を用いた新しいイオンビーム源

シリコン中微量元素を1nm未満の深さ分解能で測定

金属クラスター錯体という巨大分子を用いたイオンビーム源を開発し、材料表 面を原子層レベルで剥ぐように削り、材料中に含まれる微量元素を高精度に 計測することを可能にした。このイオンビーム源は小型のため、市販の二次イ オン質量分析装置に装着できる。この装置を用いれば、半導体中の微量元素を 1nm 未満の深さ分解能で測定できる。無機材料だけではなく、有機材料の分析 でも質量情報を壊さないなどの優れた特性をもっており、薬物分析をはじめバ イオメディカル分野などへの応用が期待される。

二次イオン質量分析法とその課題

二次イオン質量分析法(SIMS)は、 イオンビームを試料の表面に照射し、 スパッタリングにより放出される試料 の原子イオン(二次イオン)を質量分析 することで、構成原子の同定や濃度測 定を行う分析法である(図1)。深さ方 向も含めた三次元の濃度分析が高感度 (ppm~ppb)でできることから、半 導体や金属材料などに広く利用されて いる。しかし、半導体デバイスの薄膜 化・薄層化に伴い、極浅領域における サブナノメートルレベルの深さ分解能 が求められている。

深さ分解能向上のための問題とし て、イオンビーム照射による「表面荒 れ」と「ミキシング」の抑制があげられ る。表面荒れは、イオンビームの入射 角の選択や照射中の試料の回転など で、ある程度は抑制できる。一方、ミ キシングとは、イオンビームにより、 試料中の原子の位置が変わってしまい 濃度分布が変化する問題である。これ の抑制には、イオンビームのエネル ギーを下げることが有効である。しか し、これだと測定に長時間を要し、測 定は困難となる。

図1 二次イオン質量分析法 (SIMS) の原理

金属クラスター錯体イオン源の開発

この問題を解決する1つの方法は、 多数の原子で構成されるクラスターイ オンを用いることである。クラスター イオンは試料表面に衝突する際に分裂 するため各原子あたりのエネルギーが 小さくなり、ミキシングを抑制するこ とができる。さらに、スパッタリング 率がきわめて高いことや、クラスター 分裂時にその構成原子が飛び散ること で表面荒れを低減できるなど、SIMS 用イオンビームとして優れた特徴があ り期待されている。

既存のクラスターイオン源は、気体 原子(分子)を断熱膨張過程により再凝 縮させてクラスターを発生させるもの がほとんどで、サイズの制御が難しく、 また、大型装置が必要なため、実際に SIMS装置に取り付けることは容易で はなかった。

われわれは、金属クラスター錯体と いう巨大分子を用いたイオンビーム源 を提案し、研究開発を進めてきた^{[1] [2]}。 金属クラスター錯体を用いると、十分 サイズのそろったクラスターイオンが 得られ、また、イオン源のコンパクト 化も可能となる。

図2 金属クラスター錯体の例

藤原 幸雄 ふじわら ゆきお yukio-fujiwara@aist.go.jp 計測フロンティア研究部門 活性種計測技術研究グループ 研究員 (つくばセンター)

2005年4月に日産自動車株式会社総 合研究所第二技術研究所から産総研に入 所。以前は、固体イオン導電体を用いた 負イオン源や自動車用燃料電池システム 等の研究開発に従事していたが、産総研 入所後は金属クラスター錯体を用いたク ラスターイオンビーム源の研究開発なら びに二次イオン質量分析(SIMS)への 応用に取り組んでいる。

リサーチ・ホットライン

金属クラスター錯体は、複数の金属 原子の骨格構造に配位子が結合した巨 大分子である(図2)。われわれは、固 体状の金属クラスター錯体を真空中で 昇華、電子衝撃法によりイオン化して、 安定なイオンビームを生成することに 成功した。そして、スパッタリング率 が高く、また、表面荒れの誘発が少な いことも確認した^[3]。

金属クラスター錯体イオン源を用いた SIMS測定

さらにわれわれは、開発した金属ク ラスター錯体イオン源を既存のSIMS 装置に取り付け、シリコン基板中の微 量ホウ素の濃度分布を測定した(図3)。 金属クラスター錯体は、Ir₄(CO)₁₂(分 子量1104.9)である。測定試料は、表層 側から5nm間隔で4層、さらに20nm間 隔で4層、合計8層のホウ素層(0.3nm厚) を持つ(図4)。

図5は、金属クラスター錯体イオン ビーム $(Ir_4 (CO)_7^+)$ と酸素イオンビー ム (O_2^+) を同一ビームエネルギーで照 射した場合の測定結果である。前者の 場合には、8層すべてのホウ素の層を 明確に識別できるが、後者の場合には、 表面側にある4層を識別できず、深さ 分解能が劣ることがわかる。また、金 属クラスター錯体の場合、ビームエ ネルギーを5keVにすることで、1nm 未満の深さ分解能(0.9nm)を得ること ができた^[4]。(なお、金属クラスター 錯体イオンビームを5keVで照射した 場合のスパッタリング率は8程度であ る。)一方、酸素イオンビームで同様の 深さ分解能を得るためには、ビームエ ネルギーを350eV程度に下げることが 必要となるが、スパッタリング率は0.08 程度に減少し、分析時間の観点から問 題となる。

このように、金属クラスター錯体 イオンビームを用いると、スパッタ特

図3 開発した金属クラスター錯体イオン源 を二次イオン質量分析装置に取り付けた。 このイオン源は、従来の酸素イオン源とほぼ 同じ大きさで、コンパクトな構造である。

性に優れた高いエネルギーで高精度に SIMS分析ができることが実証できた。 また、有機材料のSIMS分析も実施し、 金属クラスター錯体イオンビームが高 分子材料に対しても優れた特性をもつ ことも確認できた⁶⁵。

図 4 二次イオン質量分析(SIMS)に用い たシリコン基板の断面模式図。 表面から深さ方向に8層のホウ素層が存在する。

今後の展開

今後は、溶液導入型イオン源の研究 開発を進め、図2のような多種多様な クラスターイオン種のビーム応用技術 の実現をめざす。

関連情報:

参考文献

- [1] 藤本俊幸、一村信吾、野中秀彦、黒河明:「分子ビーム装置」 特開 2003-317641
- [2] T. Fujimoto, T. Mizota, H. Nonaka, A. Kurokawa, S. Ichimura, Surf. Interface Anal. 37 (2005) 164.
- [3] Y. Fujiwara, K. Kondou, Y. Teranishi, H. Nonaka, T. Fujimoto, A. Kurokawa, S. Ichimura, M. Tomita, J. Appl. Phys. 100 (2006) 043305.
- [4] M. Tomita, T. Kinno, M. Koike, H. Tanaka, S. Takeno, Y. Fujiwara, K. Kondou, Y. Teranishi, H. Nonaka, T. Fujimoto, A. Kurokawa, S. Ichimura, Appl. Phys. Lett. 89 (2006) 053123.
- [5] Y. Fujiwara, K. Kondou, H. Nonaka, N. Saito, H. Itoh, T. Fujimoto, A. Kurokawa, S. Ichimura, M. Tomita, Jpn. J. Appl. Phys. 45 (2006) L987.

 共同研究者
富田充裕(株式会社 東芝)、近藤貢二、齋藤直昭、野中秀彦、藤本俊幸、黒河明、 一村信吾(計測フロンティア研究部門)