世界最高性能の界面制御エンハンスメント型埋め込みチャネル 4H-SiC MOSFETの作製に成功 - チャネル移動度140cm²/Vsを達成 -

A great success of <u>Interface Controlled Enhancement type Buried-Channel 4H-SiC Metal-Oxide-Semiconductor Field Effect Transistor (ICE-BC MOSFET)</u> with the best electrical performance in the world

- Establishment of channel mobility of 140cm²/Vs -

パワーエレクトロニクス研究センター 先進パワーデバイス研究室 Power Electronics Research Center Advanced Power Devices Lab.

Abstract

We have fabricated buried channel MOSFETs with a thermally grown gate oxide in 4H-SiC. The gate oxide was prepared by dry oxidation with H₂O annealing. The buried channel region was formed by nitrogen ion implantation at room temperature followed by annealing at 1500 °C. The optimum doping depth of the buried channel region has been investigated. For the nitrogen concentration of 1×10^{17} cm⁻³, the optimum depth was found to be 0.2μ m. Under this condition, the channel mobility of 140 cm²/Vs was achieved with the threshold voltage of 0.3 V. This channel mobility is the highest reported so far for a enhancement type 4H-SiC MOSFET with a thermally grown gate oxide.

1.はじめに

パワーデバイスの炭化珪素 (SiC) は、Siよりもバン ドギャップが2~3倍ある。このために絶縁破壊電界 が1桁大きく、飽和電子速度は2倍、熱伝導度は3倍 大きいので、次世代のパワーエレクトロニクスの半 導体材料として期待されている。これらの優れた物 性値からSiCデバイスの通電状態での抵抗値は、Siデ バイスよりも約2桁下がると予想されている。さら に、SiCデバイスは、バンドギャップが大きいために 動作温度の上限は、500°C~600°Cになるだけでなく、 熱伝導率が大きいので、伝熱面積が小さくても容易 に冷却できる。従って、電気自動車に用いられる大容 量の制御系素子を小型化することが可能となり、電 気自動車の実現を促進することにより、二酸化炭素 の削減に寄与する。研究が進みSiCを送電用の電力変 換素子に用いられるようになれば、2030年に予想さ れる電力損失のうち580万kWを削減できると試算 されている。従って、SiC大電力用デバイスは、省エネ ルギー、環境技術の鍵になるとして注目されている。 また、電力分野だけでなく、SiCデバイスは、21世紀に おいては、高耐圧だけでなく、高飽和電子速度のため に、携帯電話用の無線基地局用の高周波・高出力デバ イスとしても期待されている。

パワーデバイスは、一般に、PiNダイオードや ショットキーバリアダイオード(SBD)などの整流素 子と金属 - 酸化膜 - 半導体電界効果型トランジス ター(MOSFET)や接合型トランジスターのようなス イッチング素子を組み合わせたモジュールとして使 用される。図1にSiとSiCパワーデバイスのオン抵抗 と耐圧の関係を示す。このうち、SiCのSBDのオン抵 抗は、ほぼ理論値まで下がっており、欧州のメーカー が高温での信頼性試験や歩留まりのデータを公表す るなど、着実にビジネス展開へ向けて進んでいる。一 方、MOSFETは、オン抵抗が小さくスイッチング速度 が速いために、スイッチング素子として期待されて いる。SiCデバイスの中では、理論的には、4H-SiCのオ

図 1 オン抵抗と耐圧の関係 SiCには、3C ,6H ,4Hなどの様々なポリタイプが存 在するが、バンドギャップとバルク結晶のホール移 動度が大きいために理論的には、4H-SiCパワー デバイスのオン抵抗値が最も小さい。

ン抵抗値が最も小さくなる。従って、デバイスの研究 は、4H-SiCに集中している。しかし、実際には、図1に 示すように、これまで報告されたSiC MOSFETのオ ン 抵抗値は、 Siの パワー MOSFETの 理論値を 下回っ たものの、4H-SiCパワーMOSFETの理論値より大き い。図2にDMOSと呼ばれるパワーMOSFETの断面 模式図を示す。オン抵抗値は、金属とソース / ドレイ ン間のコンタクト抵抗値、ソース / ドレインのシー ト抵抗、チャネル領域の抵抗値、ドリフト領域の抵抗 値から構成される。耐圧が小さいほど、オン抵抗に占 めるチャネル抵抗の比重は大きく、耐圧が大きくな るにつれて、ドリフト領域の抵抗値の占める割合が 増加してくる。市場の大きい耐圧1kV程度の MOSFETにおいては、オン抵抗値にチャネル移動度 が大きく影響する。ここで、チャネル移動度は、チャ ネル抵抗の逆数に比例する。チャネル移動度が、13、 150、200、340cm²/Vsのオン抵抗と耐圧の関係を図1 中に点線で示す。4H-SiC基板を用いた耐圧1kVの MOSFETのオン抵抗値が、ほぼ理論値まで下がるに は、約150cm²/Vs以上のチャネル移動度が必要であ る。チャネル移動度を向上するために、界面準位密度 (酸化膜とSiC界面間に存在する欠陥)を減らす工夫 がなされたが、チャネル移動度は、10~20cm²/Vs であ り、4H-SiC MOSFETのチャネル移動度を向上するブ レークスルーが4H-SiCパワーMOSFETのオン抵抗 を下げるための最重要課題となっており、世界中で 激しい競争を繰り広げている。

日本では、平成10年から5ヵ年計画で、実用化のた めの基盤技術を確立するために「超低損失電力素子

図 2 DMOSFETの模式断面図 SiパワーMOSFETにおいて代表的な縦型パワー MOSFET。

技術開発」プロジェクトが実施されている。このう ち、SiCの結晶成長からデバイス作製の要素技術や物 性 / デバイス評価技術に関する基盤技術研究を、パ ワーエレクトロニクス研究センターで進めている。 これまで、新エネルギー・産業技術総合開発機構 (NEDO)の委託を受けた新機能素子研究開発協会 (FED)が企業の集中研として先進パワーデバイス研 究室を電総研内に設け共同研究として進めてきた。 我々は、これまでに、オン抵抗値を下げるための要素 技術として、低抵抗コンタクト抵抗技術(ETL NEWS 604、612号)や低シート抵抗技術(ETL NEWS 613号) について報告した。チャネル抵抗技術については、 SiC MOSFETの作製プロセスを確立し、高温水素ア ニールによりチャネル移動度が向上することを報告 している(ETL NEWS 610号)。しかし、チャネル移動 度は、10cm²/Vs程度であり、4H-SiCのオン抵抗の理論 値を達成するには、ほど遠いレベルであった。今回、 良好な界面を制御する技術と埋め込みチャネル MOSFET構造の最適化により、140cm²/Vs(世界最高 値)のチャネル移動度を有するエンハンスメント型 の4H-SiC MOSFETの作製に成功したので報告する。

2 .SiO₂/SiC界面制御技術

SiC MOSFETの低チャネル移動度の一つの原因として、SiO₂/SiC界面の準位がSiO₂/Si界面よりも約1桁 多いことが指摘されている。ゲート絶縁膜を形成した後に、SiCが酸化をしない温度で、H₂O雰囲気で熱 処理をすることにより、P型6H-SiC MOS構造の価電 子帯側の界面準位密度が減少することが報告され

図3 通電状態での通常のMOSFETとICE-BC MOSFETの模式断面図

横型MOSFETを用いて、チャネル移動度を評価した。ICE-BC MOSFETは、界面の欠陥(×印)を減らすと同時に、D_{ch} を最適化した。

た。これは、熱酸化した後に残された炭素原子を水分 を含んだ雰囲気で熱処理することにより、界面を進 めずに、界面準位密度の原因となっている炭素を除 去することができるので、界面準位密度が下がると 解釈されている。しかし、この技術をMOSFETに適用 してもチャネル移動度が向上したとの報告はない。 我々は、H2Oの純度に問題があると考え、高純度の水 素と酸素を燃焼させて発生したH2Oをゲート酸化膜 のアニールに用いることにより、チャネル移動度が 4~5倍になることを発見した。

3 .SiC MOSFET 埋め込みチャネル構造

図3に通電状態での通常のn型MOSFETとICE-BC MOSFETの断面模式図を示す。通常のMOSFET では、ゲート電極に正電圧を印加して、ゲート酸化膜 の下に電子を誘起することによりチャネルを形成し て通電状態にする。一方、ICE-BC MOSFETでは、あら かじめ、窒素などのイオン注入により、ゲート酸化膜 の下にSiC基板とは逆の導電型であるn-層を形成す る。このようなn-層を形成することにより、図4に示 すように、電流を流すチャネルの中心が半導体表面 から少し内部に入ったところに形成されるため、 SiO₂/SiC界面の散乱の影響を受けずにバルクの移動 度に近い値で流れる電子の数が増えるのでチャネル 移動度が向上する。特に、SiO₂/SiC界面に準位が大量 にある4H-SiC MOSFETの場合には、大幅なチャネル 移動度の向上が期待される。これまで、埋め込みチャ ネル領域の不純物濃度を高くすることによりチャネ ル移動度が向上することが報告されていたが、閾値 (しきいち)電圧(通電状態になる電圧)が負電圧にな る問題があった。閾値電圧が負であるということは、 ゲートに正の電圧が印加されていなくても電流が流 れていることを意味し、このようなMOSFETは、ディ

プリーション型と呼ばれる(図5参照)。ディプリー ション型のMOSFETは使いにくいために、一般に使 用されることはない。閾値電圧が正であるエンハン スメント型であることが要求される。これまで、埋め 込みチャネル構造でエンハンスメント型のMOSFET において、チャネル移動度を大幅に向上することは 困難であった。

図5 ディプリーション型とエンハンスメント型 MOSFETの電流-電圧特性 今回は、図3に示すように埋め込みチャネル深さ (D_{ch})の最適化を図ると同時に、先に述べた、H₂O雰囲 気による熱処理を用いたSiO₂/SiC界面の欠陥を減少 することにより、埋め込みチャネル構造でエンハン スメント型のMOSFETにおいてチャネル移動度を大 幅に向上することに成功した。

4 MOSFET作製プロセス

MOSFETの作製には、p型エピタキシャル4H-SiC (0001)基板(オフ角度:8°、有効キャリア密度: 5×10¹⁵cm⁻³)を用いた。基板をRCA洗浄した後に、 ソース/ドレイン形成のためのリン(燐)を500°Cでイ オン注入した後に、埋め込みチャネル領域を形成す るために、窒素を1×10¹⁷cm⁻³程度注入した。D_{ch}は、 0.15、0.2、0.25µmとした。次いで、1500°Cで5分の活 性化アニールを行った。1200 で140分間のドライ酸 化により40nmのゲート酸化膜を形成した後に、アル ゴン中で1200 、30分間アニールを行った。さらに、 950°Cで3時間のH₂O雰囲気での熱処理を行った。最 後に、アルミニウムを蒸着することによりゲート電 極とソース/ドレインへのオーミックコンタクトを 形成した。コンタクト形成後のアニールは行ってい ない。コンタクト抵抗値は、2×10⁵Ωcm²であった。

5.ドレイン電圧とドレイン電流の関係

図6にD_{ch}=0.2µmのMOSFETのドレイン電圧(V_d) とドレイン電流(I_d)の関係を示す。電流は、0Vから直 線的に増加し、高電圧では、飽和しており、良好な オーミック特性、飽和特性を示している。

図 6 ICE-BC MOSFETのドレイン電圧-電流特性 Vg=-3、0Vでは、電流が流れておらず、エンハン スメント型であることを示している。

6.チャネル移動度と閾値電圧

図 7 にチャネル移動度(μ_{ch})に対するゲート電圧 (Vg)依存性をDchを変数として示す。 μ_{ch} は式(1)から Vd=0.1Vで求めた。 μ_{ch} には、電界効果移動度(μ_{FE})を用 いた。Vthは、式(2)においてVd=10Vでの $\sqrt{\Gamma_{d-}}$ Vgプロッ トにおいて、直線を引き、Vg軸との交点で定義した (図8)。

 $\mu_{ch}(\mu_{FE}) = G_m \cdot L_g / (W \cdot C_{ox} \cdot V_d) , G_m = dI_d / dVg \quad (1)$ $I_d = 1/2 \cdot (W/L_g) \cdot \mu_{ch} \cdot C_{ox} (V_g - V_{th})^2 \qquad (2)$

ここで、Gmは相互コンダクタンス、Lgはゲート長、 Wはゲート幅、Coxは、酸化膜容量である。低電圧にお いて観測されるチャネル移動度の最大値は、 Dch=0.15、0.20、025 μ mにおいて、各々、45、140、 230cm²/Vsであり、Dchが大きくなるにつれて増加す る。これは、Dchが大きくなるにつれて、界面から深い 位置を流れる電子の数が増加するために、界面準位 にトラップされた電荷による散乱の影響が減少し て、SiCバルクの移動度に近い値で移動する電子の数 が増加するためである。一方、Vthは、Dch=0.15、0.20、 0.25 μ mにおいて、各々、1.8、0.3、-2.0Vであり、 Dch=0.25 μ mにおいては、電圧が印可されていなくて も電流が流れており、-10Vまで印加してもオフしな

図 7 ICE-BC MOSFETのチャネル移動度のゲート 電圧依存性

μ_{ch}対Vgにおいて、μ_{ch}はあるVgまでは、Vgの増加と 共にチャネル内の電子数が増加して、界面準位密 度や不純物を遮蔽するので増加する。一方、ある Vg以上では、表面に垂直な電界が大きくなるので、 表面ラフネスによる散乱が大きくなりチャネル移動 度は低下する。したがって、μ_{ch}はVgに対して最大 値を示す。通常、この最大値をμ_{ch}として定義する。

図8 ICE-BC MOSFETの (ドレイン電流)のゲート 電圧依存性

い。結局、D_{ch}=0.20µmにおいて、エンハンスメント型 でかつチャネル移動度140cm²/Vsを出すことができ た。これまで報告されたエンハンスメント型で埋め込 みチャネルMOSFETのチャネル移動度は、70cm²/Vs 程度であるので飛躍的に向上した。図1に示したよ うに、大きな市場が見込める耐圧1kVでの4H-SiCパ ワーMOSFETのオン抵抗値は、チャネル移動度が 150cm²/Vs以上あると、ほぼ理論的値まで下がり、4H-SiCの性能を十二分に発揮できる。今回の140cm²/Vs は、ほぼ、この150cm²/Vsを達成したといえる。従っ て、これまでに「超低損失電力素子技術開発」プロ ジェクトで報告した低コンタクト抵抗形成技術や低 シート抵抗値形成技術を統合して4H-SiCパワー MOSFETを作製すれば、オン抵抗値を理論値まで下 げられると考えられる。

7 まとめ

「超低損失電力素子技術開発」プロジェクトで実行 している、高チャネル移動度MOSFETを作製するた めの要素技術について報告した。埋め込みチャネル の深さを最適化すると共に、ゲート酸化膜形成後に H₂O雰囲気でアニールして良好な界面を形成するこ とにより、チャネル移動度140cm²/Vsを達成した。こ れにより、1kV級パワーMOSFETの3要素1)低コン タクト抵抗形成技術、2)低シート抵抗値形成技術、 3)高チャネル移動度を達成したことになり、オン抵 抗値を理論値まで下げる目処がついたと考えられ る。今後は、これらの要素技術を統合して、パワー MOSFETを作製することにより、オン抵抗が理論値 まで下がることの実証を図る予定である。

> 研究課題名 「超低損失電力素子技術の研究」プロジェクト

福田	憲司(Kenji Fukuda)	パワーエレクトロニクス研究センター(Power Electronics Research Center)
e-mail: k-fukuda@aist.go.jp		
鈴木	誠二(Seiji Suzuki)	先進パワーデバイス研究室(Advanced Power Device Lab.)
小杉	亮治(Ryoji Kosugi)	パワーエレクトロニクス研究センター(Power Electronics Research Center)
先崎	純寿(Junji Senzaki)	パワーエレクトロニクス研究センター(Power Electronics Research Center)
原田	信介(Shinsuke Harada)	パワーエレクトロニクス研究センター(Power Electronics Research Center)
安達	和広(Adachi Kazuhiro)	パワーエレクトロニクス研究センター(Power Electronics Research Center)
田中	知行(Tomoyuki Tanaka)	先進パワーデバイス研究室(Advanced Power Device Lab.)
荒井	和雄(Kazuo Arai)	パワーエレクトロニクス研究センター(Power Electronics Research Center)