グランド再生可能エネルギー2018 国際会議 AIST-FREA スペシャルセッション

GRAND RENEWABLE ENERGY 2018

AIST-FREA Special Session

2018/6/20 パシフィコ横浜 会議センターにて

Grand Renewable Energy 2018, AIST Special Session 20th June 2018, Yokohama, Japan

再エネ分散電源の導入突破への挑戦

Increasing RE Penetration Beyond Conventional Limits with Advanced DER Capabilities

Fukushima Renewable Energy Institute, AIST (FREA)
大谷 謙仁 (OTANI Kenji)

Theme

- DER (Distributed Energy Resources)
 - Solar PV, Battery Energy Storage, EV
- Advanced Inverters (Smart Inverters)
- Testing and Certification
 - Advanced Testing: HIL (Hardware-in-the-Loop)
- Supporting Grids; Smart Grid
- International Collaborations

Contents

Smart Inverter: advanced testing and validation method, by Jun Hashimoto (FREA)

IEC 61850 Standardization and HIL Testing in Smart Grids, by Taha Selim Ustun (FREA)

Advanced Laboratory Testing Methods supporting Smart Grids, by Ron Brandl (Frounhofer IEE)

Clean Energy Transformation: The Hawaii Experience, by Leon R. Roose (University of Hawaii)

Countries

ranked at #1 in the world!

Japan

– PV Installations per Habitant (2016): 62 W/Hab

Germany

- PV Capacity per Habitant: 500 W/Hab

Hawaii, USA

- The most aggressive target: RE100% by 2045
- Honolulu's PV Capacity per Habitant: 600 W/Hab

Source: IEA PVPS

Grid support function requirements (LV)

Country	Germany	Italy	Austria	France	Spain	Europe (≦16A)	Europe (>16A)	U.S.	Japan
Function	2011	2012	2013	2013	2011/ 2014	2013	2014	2018	
Q control	X	X	X		N/A	X	X	X	N/A
PF control		X	Р		N/A	X	X	X	N/A
Frequency control	X	X	X	X	N/A	X	X	X	N/A
Remote output control	X	X	X		N/A		X	X	P
LVRT		Χ			N/A		X	X	Χ
HVRT		Χ			N/A		X	X	N/A
Ref.	FGW TR3/VDE ARN4105	CEI 0-21	TOR D4	ERDF-NOI -RES_13E	RD1699/UN E206007-1	EN 50438	CLC/TS 50549-1	IEEE1547 Full revision	JEAC 9701

X: available, P: partial available

Source: J.Hashimoto et al, Smart Inverter Functionality Testing for Battery Energy Storage Systems, Smart Grid and Renewable Energy, 2017

FREA: Fukushima Renewable Energy Institute, AIST

Missions

- International R&D base for renewable energy
- New industry promotion in damaged area

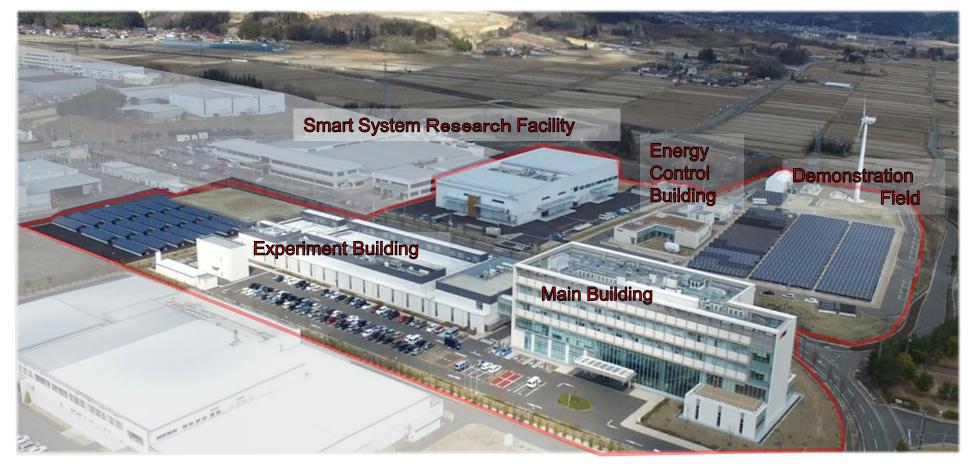
Location

Koriyama, Fukushima

Schedule

'13,Oct. organization founded '14, Apr. open in Koriyama

Budget


10 billion yen for start up (land, buildings, equipment)
3 billion yen/y, 400 people and more

Aerial View of FREA

Smart System R&D Test Platform (FREA-G)

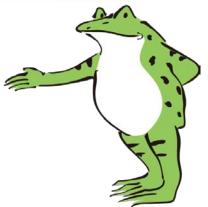
• Substantially expand the aforementioned FREA facility to build the world's most advanced test facility.

A. Grid Connection Test Bed

- Conduct required tests to secure power quality for the grid connection of distributed generations.
- Conduct various PCS tests (anti-islanding test, FRT test, etc.)
- Maximum capacity of AC simulator: 5MVA.
- Maximum capacity of EUT: 3MW.

B. Safety Test Bed

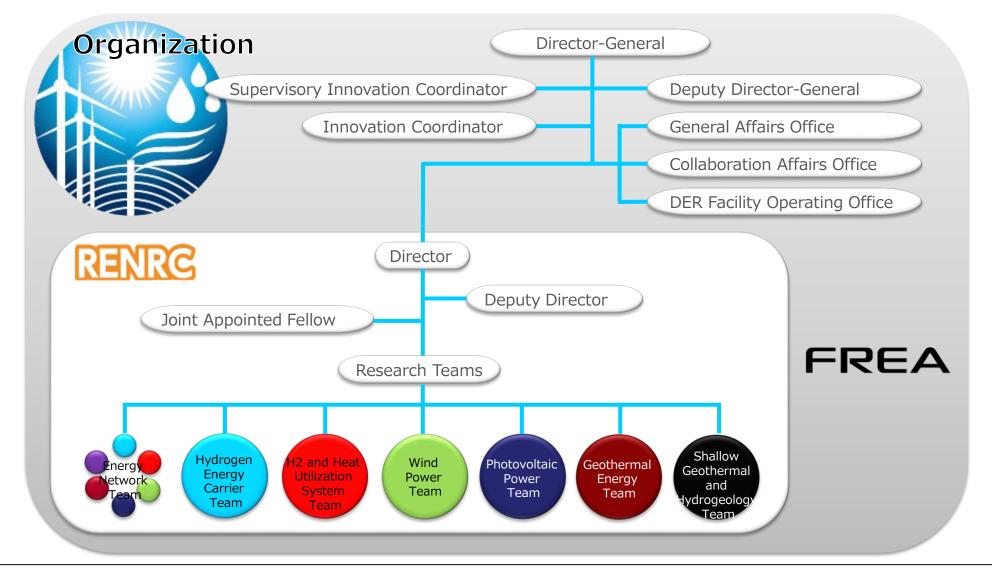
Conduct high-temperature acceleration and heat cycle tests with PCS where real environment is simulated to evaluate long-term reliability, and also safety-related tests including surge voltage test.

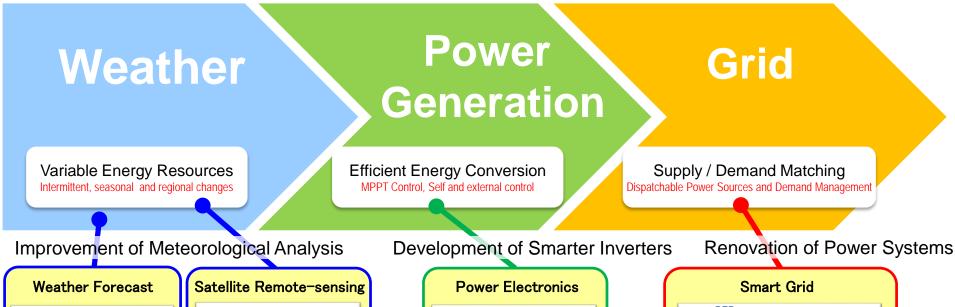


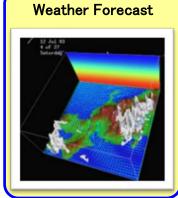
C. EMC Test Bed

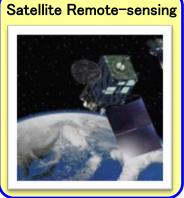
Conduct tests to measure electromagnetic radiation from PCS and to check if PCS's functions and behavior would be inhibited by external electromagnetic wave.

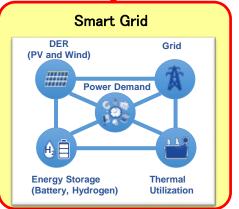
D. System Performance Test Bed


Evaluate different capabilities (e.g. automatic control function to maximize output depending on the weather) of distributed generations (PV, batteries, etc.) and PCS as one single system.




Organization




Research Themes for Smart Systems for High Penetration of Renewable Energy

Energy Network Team's Research Themes

A) Testing and Verification of DERs

- Smart Inverter Functionalities Test and Simulation
- Automated Certification Tests of Smart Inverters with Hardware-in-the-Loop Testbed

B) Designing of Energy Systems with High Penetration of DERs

- Utilization of EVs as Dispatchable Power Sources
- Protection systems
- Communication systems (based on IEC 61850 and etc.) & cyber security

C) Potential and Resource Assessment

- Remote sensing technologies for renewable resource assessment
- High Penetration Scenarios for Japan and Asian countries

Energy Network Team's Long-term Targets

- To penetrate distributed energy resources (DERs) based on renewable energy without any restriction.
 - To Double Renewable DER Deployment Potentials in Existing Grids
 - 100% Renewable DER Deployment Potentials in New-build Grids
- To <u>develop energy management technologies</u> with DERs, consumer appliances, and energy storage systems with ICT and power electronics technologies.
- To develop and standardize a communication and control system, which realize that renewable DERs and energy storage systems will have more advanced and universal value beyond the different grid interconnection regulations of each country.
- To make a universal R&D platform in FREA for the super-high penetration of renewable DERs all over the world.

